By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
    benefits of data analytics for financial industry
    Fascinating Changes Data Analytics Brings to Finance
    7 Min Read
    analyzing big data for its quality and value
    Use this Strategic Approach to Maximize Your Data’s Value
    6 Min Read
    data-driven seo for product pages
    6 Tips for Using Data Analytics for Product Page SEO
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: A Guide To Machine Learning Foundations Of Task Management Software
Share
Notification Show More
Latest News
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
ai in ppc advertising
5 Proven Tips for Utilizing AI with PPC Advertising in 2023
Artificial Intelligence
data-driven image seo
Data Analytics Helps Marketers Substantially Boost Image SEO
Analytics
ai in web design
5 Ways AI Technology Has Disrupted Website Development
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > A Guide To Machine Learning Foundations Of Task Management Software
ExclusiveMachine LearningSoftware

A Guide To Machine Learning Foundations Of Task Management Software

Ryan Kh
Last updated: 2020/11/21 at 11:52 PM
Ryan Kh
6 Min Read
task management software
Shutterstock Licensed Photo - By NicoElNino
SHARE
- Advertisement -

Task management applications are changing the way we manage teams. Here are some of the primary benefits of these task management applications:

Contents
Appreciating the Machine Learning Technology Behind Modern Task Management SoftwareMachine Learning Methodologies that Task Management Platforms Can UseSupervised LearningFinal Thoughts
  • Task management tools improve team productivity
  • Task management tools make sure that teams operate more efficiently
  • Task management tools minimize worker stress
  • Task management tools help with monitoring trends

Machine learning is playing a very important role in improving the functionality of task management applications. In January, Towards Data Science published an article on this very topic.

- Advertisement -

?In the data-driven future of project management, project managers will be augmented by artificial intelligence that can highlight project risks, determine the optimal allocation of resources and automate project management tasks…Only a few years ago, it would have required a huge corpus of text and a significant amount of compute power to train a custom project management language model. However, recent advances in applying transfer learning to NLP allows us to train a custom language model in a matter of minutes on a modest GPU, using relatively small datasets,? writes author Euan Wielewski.

Project managers should be aware of the changes that machine learning has brought to task management applications. They will be able to take better advantage of the functionality if they have a deeper understanding of the data science behind it.

More Read

machine learning seo

7 Mistakes to Avoid When Using Machine Learning for SEO

Use this Strategic Approach to Maximize Your Data’s Value
Machine Learning is Invaluable for Mobile App Testing Automation
Top 8 Machine Learning Development Companies in 2022
Machine Learning Leads to Huge Breakthroughs in Trading

Appreciating the Machine Learning Technology Behind Modern Task Management Software

For centuries before the existence of computers, humans have imagined intelligent machines that were capable of making decisions autonomously. At the early era of Artificial Intelligence, programmers tried to teach machines from the definition of logical rules that the machine itself could extend during the execution of the program. However, the complexity of programming rules with a large number of combinations of input data or extremely complex situations made it extremely difficult to advance this technology.

Machine Learning, on the other hand, is a branch of artificial intelligence whose objective is to develop techniques that allow computers to generalize behaviors and detect patterns from data received. The main idea is to teach computers what a person does in a natural way. To accomplish this task, they try that computers learn to make decisions without the need to have been expressly programmed, that is to say, that they learn from experience.

Task management tools are intended to replicate the behavior of human users. This makes it easier for them to optimize their functionality for the end user. Arthur Samuel defined it as a field of study that gives computers the ability to learn without the need to be explicitly programmed. Deputy is one of the task management software applications that relies on machine learning, as they cite multiple times on their website.

- Advertisement -

Machine Learning Methodologies that Task Management Platforms Can Use

Although there are many types of learning, Michalski defined the two most common types of learning:

  • Supervised Learning
  • Unsupervised Learning

Both of these types of learning are used by machine learning algorithms in modern task management applications. Since supervised learning is the basis for many task management applications, we will emphasize it for the purpose of this article. We can cover another article that focuses on unsupervised learning in these applications in the future. Here is an overview of the supervised learning algorithms that are frequently employed by task management tools.

Supervised Learning

Supervised learning relies on a data set with known results (training set). This data set establishes a pattern that can make predictions, In other words, based on the examples of the training set in which each example is labeled with the corresponding answer, the data scientist parameterizes an algorithm that finds the patterns that determine the result based on the entries. In this way, once the algorithm is correctly parameterized, for new entries a class or result can be assigned automatically.

Finally, in order to validate the model, a different set of test data is used other than the training set for which the results are also known. In this way, the degree of “success” of the algorithm can be known. This degree of success is measured in the form of accuracy and sensitivity.

To teach the computer, the most commonly used algorithms are:

- Advertisement -
  • Decision Trees
  • Naïve Bayes classification.
  • Regression by least squares.
  • Logistic Regression.
  • Support Vector Machines (SVM).
  • Methods “Ensemble” (Sets of classifiers).

For example, emails that are received are classified as spam or not. A growing number of task management tools are using a combination of these algorithms to offer the best functionality for their users.

Final Thoughts

These are all important things to consider as you discover the machine learning foundations of task management software. Happy learning!

TAGGED: machine learning, task management, task management software
Ryan Kh June 7, 2019
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
By Ryan Kh
Follow:
Ryan Kh is an experienced blogger, digital content & social marketer. Founder of Catalyst For Business and contributor to search giants like Yahoo Finance, MSN. He is passionate about covering topics like big data, business intelligence, startups & entrepreneurship. Email: ryankh14@icloud.com
- Advertisement -

Follow us on Facebook

Latest News

anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
ai in ppc advertising
5 Proven Tips for Utilizing AI with PPC Advertising in 2023
Artificial Intelligence
data-driven image seo
Data Analytics Helps Marketers Substantially Boost Image SEO
Analytics

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

machine learning seo
Machine Learning

7 Mistakes to Avoid When Using Machine Learning for SEO

6 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
machine learning helps with the testing process for mobile app development
Machine Learning

Machine Learning is Invaluable for Mobile App Testing Automation

9 Min Read
companies use AI to improve their testing strategies
Machine Learning

Top 8 Machine Learning Development Companies in 2022

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?