By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Improving Big Data Analytics To Address Cybersecurity Challenges
Share
Notification Show More
Latest News
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing
become a data scientist
Boosting Your Chances for Landing a Job as a Data Scientist
Jobs
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Privacy > Improving Big Data Analytics To Address Cybersecurity Challenges
Big DataData ManagementExclusivePrivacyRisk Management

Improving Big Data Analytics To Address Cybersecurity Challenges

Jonathan Zhang
Last updated: 2019/10/14 at 7:46 PM
Jonathan Zhang
5 Min Read
cybersecurity
Shutterstock Licensed Photo
SHARE

Advances in mass storage and mobile computing brought about the phenomenon we now know as “big data.” These developments then ushered in solutions and tools that can process vast amounts of information — think terabytes of it or more — in real-time. That is how “big” the need for big data analytics came to be.

Contents
Understanding Big Data AnalyticsIs Big Data Analytics a Silver Bullet?How Can Domain Data Enhance Big Data Analytics?

More specifically, big data analytics offers users the ability to generate relevant insights from heaps of data. InfoSec specialists, in particular, find big data analytics very helpful in analyzing online threats. But before we dive into its relevance for cybersecurity, let’s clarify how big data analytics works in a nutshell.

Understanding Big Data Analytics

Big data analytics is the process of evaluating large chunks of information at once. Said information can be a combination of semi-structured and unstructured data sets — coming from web server logs, social media, network traffic logs, etc.

The goal of big data analytics in cybersecurity is to uncover crucial details that can help companies make informed decisions. With such knowledge, cybersecurity teams can improve their network security and stay on top of emerging threats, thus preventing data breaches.

More Read

cybersecurity simulations

Combat AI-Powered Threats with Cybersecurity Simulations & Other Practices

Utilizing Data to Discover Shortcomings Within Your Business Model
Small Businesses Use Big Data to Offset Risk During Economic Uncertainty
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
How Big Data Is Transforming the Renewable Energy Sector

Is Big Data Analytics a Silver Bullet?

Big data analytics provides security analysts with the information they need to detect, observe, and examine concerns within their network more efficiently. This ability makes the process more proactive when it comes to warding off current and potential cyber threats.

With the right approach, relevant security information from big data can significantly reduce the time it takes for analysts to identify and resolve issues. As a result, specialists can even predict and prevent potential intrusions.

With that purpose in mind, is it enough to analyze the data from an organization’s network? Or is there a way to enhance big data analytics further?

Organizations need to have access to as much relevant information as possible to get the most out of big data. Additional sources can help analysts do much-needed comparisons and verification to determine priorities and protect IT systems against threats.

Since most cyberattacks involve the use of websites and IP addresses, enterprise data feed packages can improve an organization’s big data analytics capabilities.

How Can Domain Data Enhance Big Data Analytics?

Analysts can use historical domain data to identify websites that have had ties to attacks in the past. They can gather relevant details about a domain’s history and combine this with big data analytics tools. Doing so can provide cybersecurity experts with the information they need to obtain clues and even create threat profiles of the attackers.

Domain data from trusted WHOIS and IP geolocation databases can also contribute to pinpointing an attacker’s location. Details like the country and registrar associated with a domain may give hints on where an attack is coming from.

Another instance where big data on domains can be useful is in deploying an intrusion detection system (IDS). IDS experts may employ a large-scale WHOIS data repository that supplies them with real-time domain information to identify potential attack vectors. With the help of existing threat data and domain reports, teams can quickly spot suspicious network activities before these can result in attacks.

These are only a few examples of how domain data can improve big data analytics in cybersecurity.

Big data analytics in cybersecurity works best when companies have access to as much available information as possible. Only with comprehensive intelligence on IP addresses, domain names, and other relevant threat investigation sources can organizations enhance their network security to stay safe against even unknown cyberattacks.

When choosing the right data sources, consider one that doesn’t require manipulation to fit the requirements of already-existing systems. A WHOIS data provider like whoisxmlapi.com can help organizations reinforce their defenses against ever-evolving cyber threats.

TAGGED: big data, cybersecurity, cybersecurity challenges, cybersecurity threats, improving big data
Jonathan Zhang October 14, 2019
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
By Jonathan Zhang
Follow:
Jonathan Zhang is the founder and CEO of Threat Intelligence Platform (TIP)—a data, tool, and API provider that specializes in automated threat detection, security analysis, and threat intelligence solutions for Fortune 1000 and cybersecurity companies. TIP is part of the WhoisXML API Inc. family, a trusted intelligence vendor by over 50,000 clients.

Follow us on Facebook

Latest News

ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”1616″]

You Might also Like

cybersecurity simulations
Artificial IntelligenceExclusiveITSecurity

Combat AI-Powered Threats with Cybersecurity Simulations & Other Practices

7 Min Read
utlizing big data for business model
Big Data

Utilizing Data to Discover Shortcomings Within Your Business Model

6 Min Read
big data use in small businesses
Big Data

Small Businesses Use Big Data to Offset Risk During Economic Uncertainty

7 Min Read
data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?