By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: IBM Advances Predictive Analytics for Decision Management
Share
Notification Show More
Latest News
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > IBM Advances Predictive Analytics for Decision Management
AnalyticsDecision ManagementPredictive Analytics

IBM Advances Predictive Analytics for Decision Management

Mark Smith
Last updated: 2012/06/25 at 5:42 PM
Mark Smith
6 Min Read
SHARE

At its Business Analytics Analyst Summit (Twitter: #IBMBAS12) this week, IBM unveiled its new release of analytics software for decision management. Over the last 25 years decision support systems have transformed into decision management, in which analytics, rules and optimization methods help organizations use information to guide optimal outcomes. IBM has experience and technology in these areas, most of it acquired, to apply to specific organizational needs in vertical industries.

At its Business Analytics Analyst Summit (Twitter: #IBMBAS12) this week, IBM unveiled its new release of analytics software for decision management. Over the last 25 years decision support systems have transformed into decision management, in which analytics, rules and optimization methods help organizations use information to guide optimal outcomes. IBM has experience and technology in these areas, most of it acquired, to apply to specific organizational needs in vertical industries. In addition, IBM has advanced its information management technologies to support big data and predictive analytics in operational environments. Its stream- and event-processing technology helps speed routing and analysis of information across business processes. Each of these are critical for supporting decision management technology needs for business processes.

Operational decision management software automates repeatable tasks in business processes and also deals with unique situations in which the right responses are not as certain. IBM uses business rules for processing what is known and what can be managed through workflow. Rules may deal with a range of situations where specific conformance to compliance requirements and applied analytics can flow through predetermined steps. IBM’s Analytical Decision Management uses predictive models that use situational variables such as customer responses  to provide analysis to direct actions. Predictive models can minimize risk, optimize customer interactions and optimize responses to situations. IBM has combined its models into a set of services that can be orchestrated into operational activities and business processes. This analytical approach addresses the limitations of business process management, which attempts to map activities into a predefined order without having the ability to embed what I call situational intelligence into the business process. IBM’s environment enables organizations to focus more on operations or analytics as they choose.

This platform of decision services and configurable applications can operate in many business areas, including insurance claims, financial services transactions and customer service processes. IBM also is using its decision management offering to provide prebuilt application environments it calls Signature Solutions, which reduce the time and skills required to get started for specific purposes. These solutions are available initially in customer, finance and fraud areas, but the same approach can be applied to many industries, and it should help IBM win more opportunities to deploy its solutions and help organizations optimize business through decision management. In fact our benchmark research in predictive analytics found a similar pattern to future needs of the technology. IBM is investing significantly in decision management and has an aggressive product roadmap to make it easier to define and improve existing deployments by editing and refining existing work.

More Read

data security in big data age

6 Reasons to Boost Data Security Plan in the Age of Big Data

How Big Data Is Transforming the Maritime Industry
Predictive Analytics Helps New Dropshipping Businesses Thrive
Utilizing Data to Discover Shortcomings Within Your Business Model
Small Businesses Use Big Data to Offset Risk During Economic Uncertainty

IBM’s work to advance business process decisions should be applauded. However, based on its presentations and approach in communications at the analyst summit, I think it is offering too much high-level information on concepts and theory and not enough specifics on use-case details in real business processes, on the capabilities its software provides and how it is integrated into existing applications and systems. For example, a customer service organization likely will not use IBM’s decision management software for customer interactions by itself; it will have to work with applications from other providers that are used in agent desktop environments. IBM should give more specific examples on its partnerships and integration points with details so prospects will see it as an evolutionary approach and not a transformational one that requires a complete restart of processes and applications. Our benchmark research found that the integration into information architectures was the highest obstacle in 55 percent of organizations in use of predictive analytics that IBM helps address with its offering. It also should focus on guiding the actions more than the decisions, as improvements in the accuracy of actions will have a much larger payoff for business.

If you have not investigated at how analytics, especially predictive ones, can help improve decision-making within business processes, you should look at IBM’s decision management offerings, which can help operationally and analytically to drive better outcomes.

Regards,

Mark Smith – CEO & Chief Research Officer

 

TAGGED: big data, business process management, decision management, ibm, predictive analytics
Mark Smith June 25, 2012
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data security in big data age
Big Data

6 Reasons to Boost Data Security Plan in the Age of Big Data

7 Min Read
How Big Data Is Transforming the Maritime Industry
Big Data

How Big Data Is Transforming the Maritime Industry

8 Min Read
predictive analytics in dropshipping
Predictive Analytics

Predictive Analytics Helps New Dropshipping Businesses Thrive

12 Min Read
utlizing big data for business model
Big Data

Utilizing Data to Discover Shortcomings Within Your Business Model

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?