Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How to Get Started as a Data Engineer
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Science > How to Get Started as a Data Engineer
Big DataComputingData ManagementData Science

How to Get Started as a Data Engineer

Larry Alton
Larry Alton
6 Min Read
How to Get Started as a Data Engineer
SHARE

If you enjoy working with data, or if you’re just interested in a career with a lot of potential upward trajectory, you might consider a career as a data engineer. But what exactly does a data engineer do, and how can you begin your career in this niche?

Contents
What Is a Data Engineer?How to Become a Data Engineer

What Is a Data Engineer?

A data engineer’s job is to take data and transform it in a way that makes it easier or more useful to analyze. For example, imagine that you’re working for a company that’s creating self-driving cars. A central server is likely collecting tons of data from multiple sources; onboard measurements from the self-driving car, feedback from the driver, and external sources of data are all feeding into the system.

The company is interested in creating solutions that allow them to analyze car performance, customer satisfaction, road safety, and other concepts. Your job as a data engineer would be designing, creating, maintaining, and improving the systems to do it.

How to Become a Data Engineer

If you like to think logically, if you have a love of engineering, if you want to solve problems, or if you just want a sustainable career, data engineering could be the best path for you. So what does it take to become a data engineer?

More Read

How to Improve Data Visualization at Your Company?
Is Big Data the Silver Bullet for Advanced Supply Chain Analytics?
Data-Driven Recruiting is Solving Decades-Old Hiring Challenges
Entry Point: Architecture or Crumbling Foundation
Decision Tree Bagging
  • Get a bachelor’s degree. It’s not strictly necessary to have a bachelor’s degree to begin working in data engineering, but it certainly helps. Some employers will specifically look for candidates to have a four-year degree in computer science, data science, software engineering, or a related field. If you have a bachelor’s degree in a non-related field, like English, that may help – but you’ll need to make up for that lack of degree with an abundance of experience.
  • Master your software engineering skills with small projects. It’s a good idea to polish your software engineering and coding skills with small projects. You’ll need to be very acquainted with SQL, a foundational programming language in the realm of data science, and be at least somewhat familiar with other languages and frameworks like Python, Spark, and Kafka. Your small projects should also help you better understand things like machine learning, database architecture, and data mining – as well as commonly used platforms like Amazon Web Services.
    In addition to boosting your skills, this step will help you assemble a portfolio of work to show off your talent. Depending on where you’re applying and what role you’re seeking, this could be crucial in helping you get hired.
  • Join hackathons, groups, and other networking opportunities. Get involved with the community and start networking. Join hackathons, data and software groups, and try to meet other professionals in the industry whenever you get the chance. This is a great opportunity to learn new things, put your skills to the test, and have fun doing it. Plus, you’ll make a plethora of new connections, which may ultimately direct you to new job opportunities.
  • Start applying for entry-level jobs. At this point, you’ll be ready to start applying for entry-level jobs. Try not to get too hung up about the job title, pay rate, or working conditions – what’s important at this point in your career is getting your foot in the door. If you’re not happy with this position, you can always move onto something else – and that transition will be much easier now that you have some experience.
    Just make sure you’re professional and polite at all times during this process to maximize your chances of getting hired and preserve your connections; that means everything from sending a thank-you email after your interview to leaving on good terms.
  • Earn new certifications. Getting an entry-level job isn’t the end of your journey as a data engineer; in fact, it’s barely the beginning. Whether you get hired immediately or not, your next objective should be earning new certifications to boost your skills and credentials. Talk to your mentors and other people connected to the industry to find out the best certifications for you – and the most relevant ones for modern employers.
  • Pursue higher education. Most data engineers ultimately spend more time in education, pursuing a master’s degree, or even a PhD to fuel their career. This can be difficult to manage if you’re also trying to hold down a job while studying, but it’s worth it to maximize your career-long earnings and open the door to better opportunities.

The path to becoming a data engineer isn’t always straightforward, and you may have trouble getting started in this relatively new field. But once you have the skills and background necessary to be successful, you should have a bright career path ahead of you; demand for data engineers is unlikely to abate anytime soon.

Share This Article
Facebook Pinterest LinkedIn
Share
ByLarry Alton
Follow:
Larry is an independent business consultant specializing in tech, social media trends, business, and entrepreneurship. Follow him on Twitter and LinkedIn.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Some considerations when looking at dashboards

4 Min Read

Consuming Output for Further Processing

9 Min Read

The Datification of Our Daily Lives

5 Min Read
Image
AnalyticsBig DataCommentaryCulture/LeadershipExclusiveHadoopSocial Data

Too Much Big Data, Too Few Big Ideas

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?