By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Building an Analytical Portal to Support Analytical Culture
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Building an Analytical Portal to Support Analytical Culture
AnalyticsBest PracticesBusiness IntelligenceBusiness RulesCulture/LeadershipData MiningData QualityDecision ManagementKnowledge ManagementModelingPredictive AnalyticsStatistics

Building an Analytical Portal to Support Analytical Culture

Editor SDC
Last updated: 2011/06/22 at 4:30 PM
Editor SDC
5 Min Read
SHARE

CAN was started in 2008, to make predictive analytics applicable and accessible to businesses of almost any size.  To fulfill our mission we have become experts in helping our clients adopt predictive analytics.  The first step in adopting predictive analytics is to start building an analytical culture.  In an analytical culture, people:

CAN was started in 2008, to make predictive analytics applicable and accessible to businesses of almost any size.  To fulfill our mission we have become experts in helping our clients adopt predictive analytics.  The first step in adopting predictive analytics is to start building an analytical culture.  In an analytical culture, people:

Know the Numbers: Everyone should know what is happening and whether certain strategies were successful.  The objective of knowing the numbers is not to judge individuals or the team, but learn from the past and refine future attempts at innovation.

More Read

power of analytics

Harnessing the Power of Analytics For Direct-to-Consumer Businesses

Using Predictive Analytics to Get the Best Deals on Amazon
Predictive Analytics Helps New Dropshipping Businesses Thrive
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
Promising Benefits of Predictive Analytics in Asset Management

Examine the Numbers: In order to effectively discuss and examine the numbers, team members should be familiar with the numbers, their assumptions, and their application.

Use the Numbers: The ultimate goal of adopting analytics is to make better decisions.  This is the hardest and most complex phase of becoming analytical.  However, when achieved, this stage provides the highest Return on Investment (ROI).  It requires participating members to understand factors driving the numbers, historical paradigm shifts, and the assumptions used to make decisions.  Once the factors and assumptions are understood, they can be utilized properly to optimize processes and predict outcomes of specific decisions.   

The Analytical Portal

The key to building an analytical culture is to make analytics easy to use, understand, and accessible.  The easiest way to do this is to develop an analytical portal.  The purpose of the analytical portal is to allow everyone in your organization to know, examine, and use the numbers without having to contact the accounting and information technology departments every time a report or numbers are needed.  Your analytical portal should allow people to have access to 5 business intelligence tools:

 Dashboards will be used to quickly and easily report key metrics.  The key to building successful dashboards is to choose the correct metrics and provide quick and easy access.  Dashboards as well as scorecards will allow team members to see the big picture and drill down into finer details on a need to know basis.  Dashboards differ from slicing & dicing data in that dashboards are predetermined visualizations of key metrics that are the same across individuals and time.

Detailed Reports are to be read before using analytics to make decisions.  These are designed to ensure that statistics, equations, metrics and other reports analytics are fully understood.  This will ensure that recommendations are properly implemented.

Slicing & Dicing Data allows your employees to ask questions about the data and get quick responses.  People should be able to quickly pull any data that they want from a variety of data sources such as the census, economic data, news sources via text mining, social media, surveys, and internal databases.

Predictive Analytics allows your employees to understand the relationship between outcomes and the variables that drive them.  The results of predictive analytics can be used to simulate the outcome of specific decisions and create strategies to maximize outcomes.

Alerts & Notifications are the watchdogs of analytics.  They provide a dependable and timely way to bring awareness to team members about important events, but are not distracted by smaller, less significant changes.  If properly implemented, managers will spend less time monitoring employees and more time addressing key issues.  Alerts & Notifications can be sent via email, dashboard widget or text message.

TAGGED: analysis, analytics, analytics + data mining, contemporary analysis, Eric Burns, predictive analytics
Editor SDC June 22, 2011
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data and IP laws
Big Data & AI In Collision Course With IP Laws – A Complete Guide
Big Data
ai in marketing
4 Ways AI Can Enhance Your Marketing Strategies
Marketing
sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

power of analytics
Analytics

Harnessing the Power of Analytics For Direct-to-Consumer Businesses

6 Min Read
predictive analytics for amazon pricing
Predictive Analytics

Using Predictive Analytics to Get the Best Deals on Amazon

8 Min Read
predictive analytics in dropshipping
Predictive Analytics

Predictive Analytics Helps New Dropshipping Businesses Thrive

12 Min Read
data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?