By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Google Search Algorithms Use Big Data for Multilingual Latent Semantic Indexing
Share
Notification Show More
Latest News
How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Google Search Algorithms Use Big Data for Multilingual Latent Semantic Indexing
Big DataExclusiveMachine LearningNews

Google Search Algorithms Use Big Data for Multilingual Latent Semantic Indexing

Sean Mallon
Last updated: 2018/06/21 at 12:41 PM
Sean Mallon
6 Min Read
Google algorithm updates
Shutterstock Licensed Photo - By Bakhtiar Zein
SHARE

Google has perfected its ability to execute web search results for its users all over the world. In the early days of the Internet, the search engine was primarily suited for displaying search results for English users. Non-English-speaking users have complained that search results are often displayed in the wrong language entirely. However, Google is becoming more proficient at providing search results in other languages as well. A lot of factors can play a role, but one of the biggest is its use of deep learning to understand semantic references—enter semantic indexing. This can now be accomplished in any language that Google serves.

Contents
Semantic Indexing is Google’s Newest Advantage in the Search Engine MarketHow Can Google Account for This Unpredictable Behavior?Opportunities and limitations of using deep learning and semantic indexing for aggregating multilingual search results

Semantic Indexing is Google’s Newest Advantage in the Search Engine Market

Google has dominated the search engine industry for nearly two decades. The search engine giant has thrived by refining its algorithm to better infer user intent and match people with the most relevant content. Over the past few years, they have perfected this outcome by using deep learning to better understand the context of search queries their customers are using.

Of course, human technicians do not provide search results for the 3.5 billion searches on Google every day. The search engine aggregates content based on a ranking system dependent solely on artificial intelligence. Such an AI system would be rather simple if there were a finite number of pre-defined inputs.

Of course, that obviously is not the case. Human beings who use Google to conduct search queries are notoriously unpredictable. They can invent an endless number of search queries. In fact, 15% of search engine queries have never been used before.  The spectrum of search terms is changing all the time to reflect new trends in the macro environment.

More Read

How Big Data Is Transforming the Maritime Industry

How Big Data Is Transforming the Maritime Industry

Utilizing Data to Discover Shortcomings Within Your Business Model
Small Businesses Use Big Data to Offset Risk During Economic Uncertainty
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
How Big Data Is Transforming the Renewable Energy Sector

How Can Google Account for This Unpredictable Behavior?

In order to handle increasing volume of search queries, Google had to become very adaptable about being able to understand the true meaning of different search queries. This required the algorithms to understand the contextual meaning behind various word pairs, rather than individual words without any contextual markers.

Deep learning has played a crucial role in this process. Google web crawlers have scanned the Internet to understand the relationship between various words in specific contexts. The more frequently these pages are indexed, the better understanding the algorithms have of the relationship between various words.

Opportunities and limitations of using deep learning and semantic indexing for aggregating multilingual search results

Google has captured over 70% of the global search engine market. However, it does not have close to a monopoly in some regions. In fact, in some parts of the world, less than 1% of all search careers are conducted through Google. Native search engines are more dependable for indexing relevant content for users speaking those languages than Google. Some of this discrepancy is due to regulatory policies in authoritarian regimes, but it is also partially due to Google’s limited ability to understand the contextual meanings of various search phrases and languages other than English.

According to Shout Agency, an SEO agency in Australia, the structure of the algorithms themselves is not the core problem. Google can index any content in any language and make educated assumptions about relevance based on its own knowledge of various word pairs. While Google developers have intentionally built in biases for some search phrases, such as the “payday loan” penalty, these adjustments are the exception rather than the rule.

So, if the algorithms are equally suited for aggregating search results in any language, why is there a discrepancy in the quality of search results in different languages? The problem almost entirely stems from the fact that Google has had fewer opportunities to conduct deep learning in some languages than others. There is less content available and fewer users are searching in those languages.

Over time, though, the results will improve. As long as more content is created, web crawlers will have more opportunities to understand the nature of different search terms and aggregate content appropriately.

However, there is one risk that needs to be considered. Google is less likely to conduct manual penalties for content in some regions, due to the smaller user base and fewer Google employees that can understand the language enough to gauge the quality of the content. This could mean that there is going to be a greater prevalence of spun content, which will likely throw off the results of the algorithms that depend on deep learning.

However, this is unlikely to be an issue in regions with popular languages, such as Spanish, Portuguese, and French. Deep learning will continue to improve the quality of search results in almost every language across the world.

TAGGED: big data, Google search algorithm, search engines, semantic indexing
Sean Mallon June 21, 2018
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
By Sean Mallon
Sean is a freelance writer and big data expert. He loves to write on big data, analytics and predictive analytics.

Follow us on Facebook

Latest News

How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”1616″]

You Might also Like

How Big Data Is Transforming the Maritime Industry
Big Data

How Big Data Is Transforming the Maritime Industry

8 Min Read
utlizing big data for business model
Big Data

Utilizing Data to Discover Shortcomings Within Your Business Model

6 Min Read
big data use in small businesses
Big Data

Small Businesses Use Big Data to Offset Risk During Economic Uncertainty

7 Min Read
data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?