Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Forecasting: Evaluation Criteria
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Forecasting: Evaluation Criteria
Predictive Analytics

Forecasting: Evaluation Criteria

SandroSaitta
SandroSaitta
2 Min Read
SHARE

To continue our series on forecasting, let’s discuss one of the varying factors: the evaluation criteria. In classification, the percentage of accuracy is often used. It is obvious and easy to interpret. In the case of regression (e.g. forecasting), this is more complex.

To continue our series on forecasting, let’s discuss one of the varying factors: the evaluation criteria. In classification, the percentage of accuracy is often used. It is obvious and easy to interpret. In the case of regression (e.g. forecasting), this is more complex.

Whatever the application and the prediction method used, at one point, performances need to be evaluated. One motivation to evaluate results is to choose the most appropriate forecasting algorithm. Another one is to avoid overfitting. Thus, choosing the right criterion for your problem is a key step. In this post, we will focus on three accuracy measures.

The Root Mean Square Error (RMSE) is certainly the most used measure. It is mainly due to its simplicity and usage in other domains. Its equation is given below:

More Read

When Worlds Collide
Building an Analytical Portal to Support Analytical Culture
Attribution Analysis and Campaign Efficiency – Getting More Bang for your Buck
Signtific is a community site for forecasting the future of…
SOA and automated decision making

forRMSE
The main drawback of RMSE is to be scale dependent. It is thus not possible to compare two different time series. The second one is the Mean Absolute Percentage Error (MAPE). It is scale independent:

forMAPE
Its main issue is to be undefined when the denominator is null. This may happen often with intermittent data. The third error measure is the Mean Absolute Scaled Error (MASE). The naïve forecast (last value) can be used as the denominator:

forMASE
The measure is scale independent and if below 1, better than naïve forecast (a good benchmark).

What error measure do you use and why? Post a comment to share your opinion.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsBig DataBusiness IntelligenceCloud ComputingData ManagementData MiningData WarehousingExclusiveHadoopITPredictive AnalyticsUnstructured DataWorkforce Data

Revealed: The Top 5 Big Data Use Cases Your CEO Will Love

9 Min Read

Text Analytics Is Hard (That’s What She Said)

7 Min Read

Winning the first game in a baseball series: a harbinger, or not?

4 Min Read

Reducing the Confusion about Performance Management

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?