Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How Fintech is Using Web Data For Financial Intelligence
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > How Fintech is Using Web Data For Financial Intelligence
AnalyticsData MiningMarket Research

How Fintech is Using Web Data For Financial Intelligence

Preetish Panda
Preetish Panda
8 Min Read
Fintech collecting web data
Shutterstock Licensed Photo - By Jirsak
SHARE

The ease of data access has led to a paradigm shift in the way businesses operate. In the present state, apart from the traditional data, companies are increasingly using ‘alt-data’ — alternate data that can be accessed from unconventional sources like the web, customer support transcripts, sensors, satellite images and more.

Contents
How web data is extractedWhat data financial information companies crawlApplications of web dataEquity researchTrend analysisFinancial ratingsGovernance and complianceConclusion

Jennifer Belissent, Principal Analyst at Forrester has explained it beautifully:

We all want to know something others don’t know. People have long sought “local knowledge,” “the inside scoop” or “a heads up” – the restaurant not in the guidebook, the real version of the story, or some advanced warning. What they really want is an advantage over common knowledge – and the unique information source that delivers it. They’re looking for alternative data – or “alt-data.”

Since the web is a perpetual source of data that covers all the industries, it is a significant contributor in the ‘alt-data’ space. The applications of web data especially in financial services have a tremendous impact on this industry, since it is changing rapidly. That’s the reason majority of the leading financial information companies are crawling the web to aggregate and analyze data that helps them build robust solutions.

More Read

IBM’s New Retail Tools How you shop: what it…
[eBook] The Definitive Guide to Workforce Analytics
Twitter Analytics: Words that make a difference
Big Data Empowers the InterContinental Hotel Group
Two Ways GPU Databases Are Transforming the Retail Industry

How web data is extracted

There are primarily three options when it comes to web data extraction:

  • Do it yourself (DIY) tools
  • In-house crawlers
  • Managed services

So, how to select the right data extraction methodology? Well, it depends on the use case. As a rule of thumb you should first answer the following fundamental questions:

  • Do you have a recurring (daily/weekly/monthly) web data requirement?
  • Can you allocate a dedicated engineering team who can build the crawlers exactly as per your requirement and maintain it to ensure a steady flow of data?
  • Will the volume significantly grow over time requiring a highly scalable data infrastructure?

If the answer to the first question is ‘no’, i.e., your company would not need data at a regular frequency, then it is better to use a DIY tool. The learning curve initially can be high, but this option gives you a pre-built solution. Note that in case of high data volume that cannot be supported by a tool (even though it is a one-time requirement), the project can be outsourced.

If the use case entails frequent web crawling and it is not possible to allocate dedicated resources for building a team to create a scalable data extraction infrastructure, you can engage with a fully managed service provider. The service provider would typically build custom web crawlers depending on the target site and deliver clean data sets exactly as per the requirement. This allows you to completely focus on the application of data instead of worrying about data acquisition layer.

In-house web crawling gives you complete control on the project, but at the same time it requires skilled engineers to maintain the data feed at scale (millions of records on weekly or daily basis). Note that dedicated resources are a necessity since the websites change their structure frequently and the crawler must be updated to extract the exact data points.

What data financial information companies crawl

Businesses crawl wide range of websites across the globe (in numerous languages). Here are the generic categories:

  • News portals
  • Blogs
  • Company websites and government sites
  • Social media and forums
  • RSS feeds

Typically article title, date, full content, author details get extracted from news sites and blogs. In case of the company sites, press releases, leadership profiles, company blog, job openings, etc. get extracted. Government sites’ policy and regulations page are also monitored. Coming to social media and forums, there is a hindrance — social networks like LinkedIn disallow crawling and API is also not accessible. However, some of the social networks like Twitter are open in terms of data extraction via API access. The primary factor before crawling any site is to completely follow the robots.txt file of that site to stay out of legal issues. This file tells crawlers which pages can be crawled and what should be the crawling frequency.

Applications of web data

The web data sets in the form of alternative data can be used to build robust solutions by augmenting conventional data sources and deliver valuable intelligence. Given below are some the most common use cases:

Equity research

Since equity research requires performance data of the companies, web data can be used by continuously aggregating required information. For example, pricing and inventory data available on the site including data from income statements and balance sheets can be extracted to understand how the company is doing in terms of growth. Apart from that the job postings on the company sites, company’s ratings on employer review sites, brand mentions on forums and media can also be extracted for stronger fundamental analysis. Advanced sentiment analysis also plays an important role in gauging consumer perception.

Trend analysis

Before planning and allocating budget for investment, firms first understand the technological trend over certain time period. An important part of this analysis is the data gathered from news portals, blogs, posts on reddit and tweets — text mining techniques are applied on these data sets to uncover trending topics and the way they change. These insights can be particularly useful for venture capital firms for better portfolio allocation.

Financial ratings

Rating agencies heavily monitor and extract data from web for the companies that are tracked in their reports. This data primarily includes the public data on the company sites, third party reviews, cash-tagged tweets and brand mentions. It is also possible to extract data in real-time if the use case requires high velocity analytics.

Governance and compliance

It is paramount for companies to comply with regulatory requirements. Hence, companies that provide advisory and risk mitigation services (example: natural disasters like flood) crawl government sites and news outlets to stay abreast with policy changes and critical events. In these cases getting live data becomes imperative.

Conclusion

Financial intelligence becomes powerful when the data used for analyses and reporting covers both traditional sources and newer sources. In this context the web is the low-hanging fruit with tremendous impact — there is no threshold on the amount of web data and it continuously grows while delivering market-moving insights.

TAGGED:analyticsbig data miningdata miningfinancefinancial intelligencefintechmachine learning
Share This Article
Facebook Pinterest LinkedIn
Share
ByPreetish Panda
Follow:
Preetish Panda manages marketing at PromptCloud, a Bangalore-based large-scale web data extraction service provider. He is passionate about convergence of technology, marketing, and analytics. His thought pieces have been published popular techno-business outlets like TheNextWeb and VentureBeat.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Promoting Poor Data Quality

10 Min Read
Image
Business IntelligenceData MiningExclusiveInside CompaniesMarketingPredictive Analytics

We’re Not Artists: The Craft of Influencing Decision Makers

6 Min Read
Image
AnalyticsBig Data

Finance Can Get a Big Advantage from Big Data

15 Min Read
machine learning helping writers
Machine Learning

Machine Learning Technology is Streamlining the Writing Process

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?