Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Failing to Address Data Quality and Consistency – A Series of Unfortunate Data Warehousing/Business Intelligence Events
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Failing to Address Data Quality and Consistency – A Series of Unfortunate Data Warehousing/Business Intelligence Events
Data Warehousing

Failing to Address Data Quality and Consistency – A Series of Unfortunate Data Warehousing/Business Intelligence Events

RickSherman
RickSherman
5 Min Read
SHARE

If data warehouses could talk, they might say “Don’t shoot me, I am just the messenger!”

If data warehouses could talk, they might say “Don’t shoot me, I am just the messenger!”

People sometimes think the data warehouse (DW) has caused a problem with data quality or inconsistency, when in fact, the problem started in the enterprise’s source systems. But because the DW can be the only place where business people can view enterprise data, it becomes the messenger delivering the bad news.  It’s an easy target to blame.

More Read

Big Data Is Not Data Warehousing
Need for Speed
3 Big Hadoop Myths Dispelled
BI and Marketing Lessons Learned from the F-22 Raptor
Overcoming Data Management Challenges in Online Channel

Although the DW program can’t be blamed for creating the data quality problems or inconsistency, you can blame it for not identifying and addressing the problems.  Too many people in DW programs believe the following myths:

  • The DW does not create or alter data, but passes on what is in the systems-of-record (SORs). A corollary is that any data quality or inconsistency problems need to be resolved by the SORs.
  • The data is fine and does not have any significant quality issues (The SOR owners, IT or business people may state this.)

Don’t fall into these traps. Don’t assume anything about the state of the data. The areas where data quality and inconsistency problems lurk:

  • Data quality within SOR applications may be “masked” by corrections made within reports or spreadsheets created from this data. The people who told you the data is fine might not even be aware of these “adjustments.”
  • Data does not age well. Although data quality may be fine now, there’s always the chance that you’ll have problems or inconsistencies with the historical data. The problems can also arise when applications like predicative analytics need to use historical data.
  • Data quality may be fine within each SOR application, but may be very inconsistent across applications. Many companies have master data inconsistency problems with product, customer and other dimensions that will not be apparent until the data is loaded into the enterprise DW.

The unfortunate events are that data quality and inconsistency problems will become evident in the enterprise DW and it will be blamed. Even if the DW program can prove the problems reside in the SORs it still will be blamed for being surprised and not proactively dealing with it. The worst case is that the DW program’s credibility will be dealt a blow from which it cannot recover.

What should be done?

Never assume the data quality or inconsistency problems don’t exist or that the DW program can ignore them. The steps you should undertake:

  • Obtain data quality and consistency estimates and assumed metrics as part of a Service Level Agreement (SLA) when gathering the business and data requirements from the business and SOR application owners.
  • Perform a data profiling and source systems analysis to determine the current state of data quality and consistency within and across SORs.
  • Create a gap analysis between current state and desired state, i.e. data quality metrics in SLA.
  • ropose data architecture and data integration tasks that are needed to bridge that gap. This should include timeline, tasks, resources and costs to implement and maintain an ongoing set of data quality processes.
  • Negotiate with business and SOR application owners if effort or costs are too high to lower metrics within SLA. 

You can’t fix a problem unless you can identify and admit that one exists. Data quality and inconsistency problems are fairly common, so don’t be surprised that they exist and don’t lose the DW credibility by being blindsided.

(This is part oSeries_unfortunatef our ongoing Series of Unfortunate Data Warehousing and Business Intelligence Events. Click for the complete series, so far.)

TAGGED:advice
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

How Does Predictive Analytics Work?

5 Min Read

Extend the Possibilities of BI

2 Min Read

“Some is not a number and soon is not a time”

0 Min Read

How to analyze unfamiliar data: circle, dive, and riff

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?