Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: ETL Checkpoints
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > ETL Checkpoints
Business Intelligence

ETL Checkpoints

MIKE20
MIKE20
4 Min Read
SHARE

Contents
The Case for CheckpointsEnter the CheckpointFeedback

ETL tools can be extremely involved, especially with complex data sets. At one time or another, many data management professionals have built tools that have done the following:

More Read

Using Link Analysis to Plan the Healthcare System
More Brands Use AI Driven PPC Strategies For Optimal Exposure
Help Desk – A User’s Guide to Analytics-based Performance Management
The Data Consumption Dilemma: 4 Pitfalls to Avoid
How to Accelerate Insight

ETL tools can be extremely involved, especially with complex data sets. At one time or another, many data management professionals have built tools that have done the following:

  • Taken data from multiple places.
  • Transformed into (often significantly) into formats that other systems can accept.
  • Loaded said data into new systems.

In this post, I discuss how to add some basic checkpoints into tools to prevent things from breaking bad.

The Case for Checkpoints

Often, consultants like me are brought into organizations in need of solving urgent data-related problems. Rather than gather requirements and figure everything out, the client usually wants to just start building. Rarely will people listen when consultants advocate the need to take a step back before beginning our development efforts in earnest. While this is a bit of a generalization, few non-technical folks understand:

  • the building blocks required to create effective ETL tools
  • the need to know what you need to do–before you actually have to do it
  • the amount of rework required should developers have an incomplete or inaccurate understanding of what the client needs done

Clients with a need to get something done immediately don’t want to wade through requirements; they want action–and now. The consultant who doth protests too much runs the risk of irritating his/her clients, not to mention being replaced. While you’ll never hear me argue against understanding as much as possible before creating an ETL tool, I have ways to placate demanding clients while concurrently minimizing rework.

Enter the Checkpoint

Checkpoints are simply invaluable tools for preventing things from getting particularly messy. Even simple SQL SELECT statements identifying potentially errant records can be enormously useful. For example, on my current assignment, I need to manipulate a large number of financial transactions from disparate systems. Ultimately, these transactions need to precisely balance against each other. Should one transaction be missing or inaccurate, things can go awry. I might need to review the thirty or so queries that transform the data, looking for an error on my end. This can be time-consuming and even futile.

Enter the checkpoint. Before the client or I even run the balancing routine, my ETL tool spits out a number of audits that identify major issues before anything else happens. These include:

  • Missing currencies
  • Missing customer accounts
  • Null values
  • Duplicate records

While the absence of results on these audits guarantees nothing, both the client and I know not to proceed if we’re not ready. Consider starting a round of golf only two realize on the third whole that you forgot extra balls, your pitching wedge, and drinking water. You’re probably not going to have a great round.

Sure, agile methods are valuable. However, one of the chief limitations of iterative development is that you may well be building something incorrectly or sub-optimally. While checkpoints offer no guarantee, at least they can stop the bleeding before wasting a great deal of time analyzing problems that don’t exist. Use them liberally; should the produce no errors, you can always ignore them, armed with increased confidence that you’re on the right track.

Feedback

What say you?

Read more at MIKE2.0: The Open Source Standard for Information Management

TAGGED:etl
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

etl for data-driven businesses
Big Data

Understanding ETL Tools as a Data-Centric Organization

8 Min Read

Syncsort and Trillium Software Partnership

4 Min Read

Maximizing the Business Value of Big Data

11 Min Read

5 Simple Tidbits to Include in Your Data Error Report

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?