Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data – Big Change or Big Hype?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > Big Data – Big Change or Big Hype?
CommentaryCulture/LeadershipDecision Management

Big Data – Big Change or Big Hype?

Barry Devlin
Barry Devlin
5 Min Read
SHARE

Laurel-Hardy.jpgIn the Information part of Information Technology, Big Data is the Big Hit of 2011.  It’s also a wonderful phrase to play with: take the “big”, place it in front of a few other words and suddenly you have a strapline… or a blog title!  So, is it a big change for IT, or is it just big hype?

Laurel-Hardy.jpgIn the Information part of Information Technology, Big Data is the Big Hit of 2011.  It’s also a wonderful phrase to play with: take the “big”, place it in front of a few other words and suddenly you have a strapline… or a blog title!  So, is it a big change for IT, or is it just big hype?

There’s no doubt in my mind that big data describes a real and novel phenomenon; unfortunately, there are also many existing and well-understood phenomena in the world of business intelligence and data warehousing that are getting sucked into marketing stories and, indeed, even into respectable articles about big data.

The recent McKinsey Quarterly article “Are you ready for the era of ‘big data’?” (registration required) opens with the following example: “The top marketing executive at a sizable US retailer recently [discovered that a] major competitor was steadily gaining market share across a range of profitable segments…  [This] competitor had made massive investments in its ability to collect, integrate, and analyze data from each store and every sales unit and had used this ability to run myriad real-world experiments.  At the same time, it had linked this information to suppliers’ databases, making it possible to adjust prices in real time, to reorder hot-selling items automatically, and to shift items from store to store easily.  By constantly testing, bundling, synthesizing, and making information instantly available across the organization… the rival company had become a different, far nimbler type of business.  What this executive team had witnessed first hand was the game-changing effects of big data“ [my emphasis].

More Read

SOA for Process and Data Integration
11 Guiding Principles for a Successful Business Intelligence Implementation
Infochimps’ New CEO on What’s Next in Big Data
Big Data, Big Hype, Big Danger
Big Data is Critical to the DoD Science and Technology Investment Agenda

With all due respect to the authors, I believe that anybody who has been involved in business intelligence over the past ten years will be underwhelmed by this story.  It is almost entirely a scenario, and a common one, at that, describing a pervasive data warehousing implementation and operational BI excellence.  I suspect that the reason this example was tagged as big data was because of the reference to running myriad real-world experiments.  This is a behavior often associated with big data; however, on its own, it is generally not a sufficient characteristic.  

The remainder of the article provides many interesting examples and possible consequences, both beneficial and cautionary, of using big data.  For the business executive, it clearly whets the appetite.  But, from an IT perspective, it misses a key aspect–a viable definition of what big data really is.  This is hardly surprising; big data has reached the point on the hype curve where definitions are considered unnecessary.  We all seem to have an assumed definition that neatly meets our needs, be it selling a product or initiating a project.  Hear me clearly, though.  Despite the hype, there is something real going on here.  And it’s fundamentally about the underlying characteristics of the information involved; characteristics that differ significantly from the data we in IT have stored and used over the years.

I contend that there are four types of information that together make up big data:
1.    Machine-generated data, such as RFID data, physical measurements and geolocation data, from monitoring devices
2.    Computer log data, such as clickstreams
3.    Textual social media information from sources such as Twitter and Facebook
4.    Multimedia social and other information from the likes of Flickr and YouTube

They are as different from traditional transactional data (the mainstay of BI) as they are from one another.  They have little in common, beyond their volume.  How business extracts value from them and how IT processes them vary widely.

While closely related to traditional BI and data warehousing, big data projects require additional and often very different skills in business and IT.  Their value is first to drive innovative change in business processes; only afterwards can their use become ongoing and operational.  These are topics I’ll return to in the coming months.  But, in the meantime, join me for my webinar “Big Data Drives Tomorrow’s Business Intelligence” on 25th October for further insights in this rapidly evolving area.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsBusiness IntelligenceCloud ComputingData MiningData QualityData VisualizationData WarehousingDecision ManagementExclusiveHadoopMapReduceMarket ResearchOpen SourceSocial DataSQLUnstructured Data

Spotlight on SiSense: BI Without the Bandwidth

6 Min Read
Image
AnalyticsBig DataCommentaryExclusiveHardwareITLocationMobilitySecurity

Ramifications of IT Infrastructure Everywhere

6 Min Read

Because It’s The Weekend: Telehack Into The Past

3 Min Read

Interviewing Software Engineers: Retiring a Great Interview Problem

12 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?