By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Beware of Big Data Technology Zealotry
Share
Notification Show More
Latest News
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing
become a data scientist
Boosting Your Chances for Landing a Job as a Data Scientist
Jobs
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Beware of Big Data Technology Zealotry
AnalyticsBest PracticesBig DataCommentaryCulture/LeadershipData VisualizationData WarehousingExclusiveHadoopHardwareOpen SourcePredictive AnalyticsRisk Management

Beware of Big Data Technology Zealotry

paulbarsch
Last updated: 2014/06/24 at 3:55 AM
paulbarsch
5 Min Read
Image
SHARE

Image

Image

Undoubtedly you’ve heard it all before: “Hadoop is the next big thing, why waste your time with a relational database?” or “Hadoop is really only good for the following things” or “Our NoSQL database scales, other solutions don’t.” Invariably, there are hundreds of additional arguments proffered by big data vendors and technology zealots inhabiting organizations just like yours. However, there are few crisp binary choices in technology decision making, especially in today’s heterogeneous big data environments.

Teradata CTO Stephen Brobst* has a great story regarding a Stanford technology conference he attended. Apparently in one session there were “shouting matches” between relational database and Hadoop fanatics as to which technology better served customers going forward. Mr. Brobst wasn’t amused, concluding; “As an engineer, my view is that when you see this kind of religious zealotry on either side, both sides are wrong. A good engineer is happy to use good ideas wherever they come from.”

More Read

Image

4 Business Risks That Might Prevent Big Data ROI

3 Big Data Potholes to Avoid
Is Cloud Sameness Dangerous to Competitive Advantage?
Wasted Breath: Data Alone Won’t Convince
Less Dogma Equals Better Decision Making

Considering various technology choices for your particular organization is a multi-faceted decision making process. For example, suppose you are investigating a new application and/or database for a mission critical job. Let’s also suppose your existing solution is working “good enough”. However, the industry pundits, bloggers and analysts are hyping and luring you towards the next big thing in technology. At this point, alarm bells should be ringing. Let’s explore why.

First, for companies that are not start-ups, the idea of ripping and replacing an existing and working solution should give every CIO and CTO pause. The use cases enabled by this new technology must significantly stand out.

Second, unless your existing solution is fully depreciated (for on-premises, hardware based solutions), you’re going to have a tough time getting past your CFO. Regardless of your situation, you’ll need compelling calculations for TCO, IRR and ROI.

Third, you will need to investigate whether your company has the skill sets to develop and operate this new environment, or whether they are readily available from outside vendors.

Fourth, consider your risk tolerance or appetite for failure—as in, if this new IT project fails—will it be considered a “drop in the bucket” or could it take down the entire company?

Finally, consider whether you’re succumbing to technology zealotry pitched by your favorite vendor or internal technologist. Oftentimes in technology decision making, the better choice is “and”, not “either”.  

For example, more companies are adopting a heterogeneous technology environment for unified information where multiple technologies and approaches work together in unison to meet various needs for reporting, dashboards, visualization, ad-hoc queries, operational applications, predictive analytics, and more. In essence, think more about synergies and inter-operability, not isolated technologies and processes.

In counterpoint, some will argue that technology capabilities increasingly overlap, and with a heterogeneous approach companies might be paying for some features twice. It is true that lines are blurring regarding technology capabilities as some of today’s relational databases can accept and process JSON (previously the purview of NoSQL databases), queries and BI reports can run on Hadoop, and “discovery work” can complete on multiple platforms. However, considering the maturity and design of various competing big data solutions, it does not appear—for the immediate future—that one size will fit all.

When it comes to selecting big data technologies, objectivity and flexibility are paramount. You’ll have to settle on technologies based on your unique business and use cases, risk tolerance, financial situation, analytic readiness and more.  

If your big data vendor or favorite company technologist is missing a toolbox or multi-faceted perspective and instead seems to employ a “to a hammer, everything looks like a nail” approach, you might want to look elsewhere for a competing point of view.

*Full disclosure: the author of this column is employed by Teradata Corporation.

TAGGED: risky business
paulbarsch June 24, 2014
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”1616″]

You Might also Like

Image
Big DataBusiness IntelligenceRisk Management

4 Business Risks That Might Prevent Big Data ROI

5 Min Read
Image
Big Data

3 Big Data Potholes to Avoid

5 Min Read
Image
Uncategorized

Is Cloud Sameness Dangerous to Competitive Advantage?

5 Min Read
Image
CommentaryExclusive

Wasted Breath: Data Alone Won’t Convince

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?