Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The “Avoidability” of Forecast Error
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > The “Avoidability” of Forecast Error
Predictive Analytics

The “Avoidability” of Forecast Error

mvgilliland
mvgilliland
4 Min Read
SHARE

“Forecastability” is a frequent topic of discussion on The BFD, and an essential consideration when evaluating the effectiveness of any forecasting process. A major critique of forecasting benchmarks is that they fail to take forecastability into consideration: An organization with “best in class” forecast accuracy may do so only because they have the easiest to forecast demand — not because their forecasting methods are particularly admirable.

Thus, the underlying forecastability has to be considered in any kind of comparison of forecasting performance.

“Forecastability” is a frequent topic of discussion on The BFD, and an essential consideration when evaluating the effectiveness of any forecasting process. A major critique of forecasting benchmarks is that they fail to take forecastability into consideration: An organization with “best in class” forecast accuracy may do so only because they have the easiest to forecast demand — not because their forecasting methods are particularly admirable.

Thus, the underlying forecastability has to be considered in any kind of comparison of forecasting performance.

More Read

Defining The Analytic Process
Do not underestimate the need for automation in decision making
Beyond BigData, the Shift To Decision Management w/ James Taylor
The Role of Predictive Analytics in Forecasting using Business Intelligence
The CEO Wants Analytics! Now What?

Along with the general forecastability discussion is the question “What is the best my forecasts can be?” Can we achieve 100% forecast accuracy (0% error), or is there some theoretical or practical limit?

It is generally acknowledged that, at the other extreme, the worst your forecasts should be is the error of the naive forecast (i.e., using a random walk as your forecasting method). You can achieve the error of the naive forecast with no investment in big computers or fancy software, or any forecasting staff or process at all. So the fundamental objective of any forecasting process is simply “Do no worse than the naive model.”

“What is the best my forecasts can be?” is difficult, and perhaps impossible to answer. But a compelling new approach on the “avoidability” of forecast error is presented by Steve Morlidge in the Summer 2013 issue of Foresight: The International Journal of Applied Forecasting.

How Good Is a “Good” Forecast?

Steve Morlidge

Steve Morlidge is co-author (with Steve Player) of the excellent book Future Ready: How to Master Business Forecasting (Wiley, 2010). After many years designing and running performance management systems at Unilever, Steve founded Satori Partners in the UK.

In his article, Steve examines the current state of thought on forecastability. He considers approaches using volatility (Coefficient of Variation), Theil’s U statistic, Relative Absolute Error, Mean Absolute Scaled Error, FVA, and “product DNA” (an approach suggested by Sean Schubert in the Summer 2012 issue of Foresight).

ImageSteve starts with an assertion that “the performance of any system that we might want to forecast will always contain noise.” That is, outside the underlying pattern or rule or signal guiding the behavior, there is some level of randomness. So even if we know the rule guiding the behavior, we model the rule perfectly in our forecasting algorithm, and that rule doesn’t change in the future, we will still have some amount of forecast error determined by the level of randomness (noise). Such error is “unavoidable.”

Errors from the naive forecast are one way of meauring the amount of noise in data. From this, Steve makes the conjecture that “there is a mathematical relationship between these naive forecast errors and the lowest possible errors from a forecast.”

TAGGED:Forecast Error
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?