Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The “Avoidability” of Forecast Error
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > The “Avoidability” of Forecast Error
Predictive Analytics

The “Avoidability” of Forecast Error

mvgilliland
mvgilliland
4 Min Read
SHARE

“Forecastability” is a frequent topic of discussion on The BFD, and an essential consideration when evaluating the effectiveness of any forecasting process. A major critique of forecasting benchmarks is that they fail to take forecastability into consideration: An organization with “best in class” forecast accuracy may do so only because they have the easiest to forecast demand — not because their forecasting methods are particularly admirable.

Thus, the underlying forecastability has to be considered in any kind of comparison of forecasting performance.

“Forecastability” is a frequent topic of discussion on The BFD, and an essential consideration when evaluating the effectiveness of any forecasting process. A major critique of forecasting benchmarks is that they fail to take forecastability into consideration: An organization with “best in class” forecast accuracy may do so only because they have the easiest to forecast demand — not because their forecasting methods are particularly admirable.

Thus, the underlying forecastability has to be considered in any kind of comparison of forecasting performance.

More Read

The case for a smarter health system (via IBMSocialMedia)
Predictive Analytics Methodologies Could Be The Secret To Great Emails
NCAA Bracketology and Other Sports Analytics Winners
Why Predictive Analytics is Important and More
Is Social Analytics Better at Tracking Disease?

Along with the general forecastability discussion is the question “What is the best my forecasts can be?” Can we achieve 100% forecast accuracy (0% error), or is there some theoretical or practical limit?

It is generally acknowledged that, at the other extreme, the worst your forecasts should be is the error of the naive forecast (i.e., using a random walk as your forecasting method). You can achieve the error of the naive forecast with no investment in big computers or fancy software, or any forecasting staff or process at all. So the fundamental objective of any forecasting process is simply “Do no worse than the naive model.”

“What is the best my forecasts can be?” is difficult, and perhaps impossible to answer. But a compelling new approach on the “avoidability” of forecast error is presented by Steve Morlidge in the Summer 2013 issue of Foresight: The International Journal of Applied Forecasting.

How Good Is a “Good” Forecast?

Steve Morlidge

Steve Morlidge is co-author (with Steve Player) of the excellent book Future Ready: How to Master Business Forecasting (Wiley, 2010). After many years designing and running performance management systems at Unilever, Steve founded Satori Partners in the UK.

In his article, Steve examines the current state of thought on forecastability. He considers approaches using volatility (Coefficient of Variation), Theil’s U statistic, Relative Absolute Error, Mean Absolute Scaled Error, FVA, and “product DNA” (an approach suggested by Sean Schubert in the Summer 2012 issue of Foresight).

ImageSteve starts with an assertion that “the performance of any system that we might want to forecast will always contain noise.” That is, outside the underlying pattern or rule or signal guiding the behavior, there is some level of randomness. So even if we know the rule guiding the behavior, we model the rule perfectly in our forecasting algorithm, and that rule doesn’t change in the future, we will still have some amount of forecast error determined by the level of randomness (noise). Such error is “unavoidable.”

Errors from the naive forecast are one way of meauring the amount of noise in data. From this, Steve makes the conjecture that “there is a mathematical relationship between these naive forecast errors and the lowest possible errors from a forecast.”

TAGGED:Forecast Error
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?