Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: AI Data, Traditional Trading, and Modern Investments
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Artificial Intelligence > AI Data, Traditional Trading, and Modern Investments
Artificial IntelligenceBig DataExclusive

AI Data, Traditional Trading, and Modern Investments

AI technology has helped investors significantly reduce their risk and maximize returns.

Allan Smith
Allan Smith
7 Min Read
benefits of AI in investing
Shutterstock Photo License - Phonlamai Photo
SHARE

Artificial intelligence is drastically changing the future of finance. Financial institutions spent over $10.1 billion on AI last year. One of the many ways that AI is being leveraged in finance is by helping improve the experience of investors.

Contents
The Issues With the Traditional ApproachThe Modern ApproachThe Rise of Robo-AdvisorsAdvantages & Disadvantages of AI DataAn Improved Consumer AccessibilityAI Data in the Future

Modern investors enjoy a much smoother trading experience than their predecessors. Thanks to the invention of the internet, everything from conducting trades to downloading comprehensive reports can be completed almost instantly. Tasks that previously took weeks now take only minutes, which has certainly encouraged the next generation of young investors. This is just one of the many ways that AI has changed the financial sector.

However, innovation never sleeps, and so the modern investing landscape is continuing to change (this time with the introduction of AI). Still, AI—as a whole—is a technology that’s still in its infancy, sans regulations and general standards. Does implementing AI & AI data into the modern trading world actually provide any benefits? In this article, we aim to find out!

The Issues With the Traditional Approach

The market is constantly changing, which is why many professional analysts make careers out of studying it. By analyzing, identifying, and predicting these trends, analysts are able to help their clients minimize risk while enjoying large returns. AI has significantly helped investors in this regard. To a certain extent, prices are partially based on the general public’s interactions and perception of the value of an asset. Human analysts are able to incorporate these emotional responses into their stock predictions, combining them with trend data to produce relatively accurate analytics. However, making these calculations can be extremely time-consuming and—as humans are prone to errors—aren’t always accurate. Unfortunately, even the same trends can have different interpretations from multiple analysts.

More Read

Young woman near digital screen in street at evening time
Big Fashion Meets Big Data: How Fashion Industry Is Benefiting From Big Data
Big Data Should be a Priority in Every College Curriculum
Dawn of a new era: On-site – Off-site Integrated Marketing
Living Without a Trace of Big Data
Optimizing Cost with DevOps on the Cloud

The Modern Approach

Modern analysts don’t complete all of their calculations using pen and paper; they take advantage of the various tools at their disposal. There are many different software solutions designed to aid analysts and investors alike, allowing them to compile large amounts of data in a short amount of time. These programs are often able to represent data in a number of different ways—such as line graphs or candlestick charts—which makes it easier to process the data. Nonetheless, manually analyzing data is still somewhat time-consuming, even with the aid of software solutions. That’s why many companies have started to implement AI data into their investing strategies.

The Rise of Robo-Advisors

For years, many financial experts pushed the idea of investing early, yet actually getting started required a lot of effort. Even after stocks and other assets could be purchased through an online brokerage, seeing consistent returns still required some knowledge of the stock market. Fortunately, the first robo-advisors were created in 2008.

Robo-advisors were a unique service that simplified investing for the masses. Rather than needing to make individual investments, analyzing the markets, and actively trade, users were able to simply deposit money and wait. The robo-advisor handled the actual investment process, using AI data analysis and automation to complete trades and react to market changes. These days, consumers have plenty of robo-advisors to choose from, making it easy for nearly anyone to start investing.

Advantages & Disadvantages of AI Data

The main difference between AI data and human data is that AI data lacks an emotional component. In some situations, this can be a disadvantage (especially for short-term trading). For example, current political or PR issues (and the resulting consequences) can be emotionally analyzed by a human. This emotional insight allows them to incorporate public perception into their predictions and make proactive adjustments. As AI data is based entirely on statistics and doesn’t consider emotions, a robo-advisor can only react: it’s incapable of making proactive choices based on emotional responses from shareholders.

The flip side is that a system relying solely on AI data doesn’t make emotionally charged decisions. While a human may start to reconsider their investments as a low drags on, the AI is only considering the historical data that it’s used to make its decisions. Every decision made is based solely on a comprehensive analysis of the past, which is far more inclusive than one produced by a human analyst.

An Improved Consumer Accessibility

Another benefit of incorporating AI data into investing is improved customer accessibility. Investing early allows one to take full advantage of compound interest, but the rates and fees charged by human advisors can make hiring one unrealistic. Robo-advisors are able to provide portfolio management services for a fraction of the cost, making them much more affordable to potential young investors. While their average returns—which tend to average between 11.7% to 13.4%—aren’t as impressive as alternative investment options, robo-advisor offer one of the easiest ways to start building a portfolio on a limited income.

AI Data in the Future

The technology may still be relatively new, but it’s reasonable to anticipate that modern AI will continue to become more popular in the future. While it will likely never entirely replace human analysts, it will certainly be prominent in the market moving forward. With uses for everything from personal finance management to market tracking, we anticipate that options will only expand as the technology improves.

TAGGED:ai in financebig data investing
Share This Article
Facebook Pinterest LinkedIn
Share
ByAllan Smith
Follow:
Allan is an experienced blogger and he notes down his thoughts on a regular basis through his blog Day to Day Finance. At its core, writing is a part of communication. Allan loves to communicate with people via his write ups. He shares his thoughts, advices, tips, and tricks related to finance, marketing, lifestyle, and on many other topics which are closely related to daily life. He believes blogging helps a person to think deeper, which is the reason he loves to write so much.

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

AI cash flow management
Artificial Intelligence

AI Streamlines Cash Operations to Boost Business Efficiency

9 Min Read
big data in investing strategies
Analytics

Beginners Guide to Using Analytics to Invest in Stocks

11 Min Read
predictive analytics and cryptocurrency trading
Blockchain

Can Predictive Analytics Identify Future Crypto Profitability?

10 Min Read
big data in global remittance industry
Big Data

Big Data Partnerships Drive Growth in the Global Remittance Market

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?