Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How Artificial Intelligence Can Benefit The Finance Industry
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Artificial Intelligence > How Artificial Intelligence Can Benefit The Finance Industry
Artificial Intelligence

How Artificial Intelligence Can Benefit The Finance Industry

Philip Piletic
Philip Piletic
6 Min Read
artificial intelligence can benefit the finance industry
SHARE

 

Contents
Mining Big Data from BanksAI and the World of CreditorsStreamlining Compliance Tasks

Artificial intelligence (AI) was once mostly associated with the video game industry, but financial institutions are starting to realize that this technology can do a lot for them. Perhaps the most common use of AI modules in the banking industry involves the calculation of interest rates and home values. Intelligent software can sort through historical pricing charts to develop a model that more accurately predicts the financial future by taking numerous factors into account. It’s these additional factors that indicate that artificial intelligence can benefit the finance industry.

Mining Big Data from Banks

Historical pricing models have normally looked at such things as seasonal demand to determine the future value of any commodity. Banks have been collecting far more information than this for quite some time, but only a recent push for data monetization has forced developers to take a second look at countless other factors. AI-based solutions determine the value of both physical and investment products by looking at the following:

-How demand for one type of product influences another

More Read

pexels thisisengineering 3861958
ChatGPT and Other AI Startups Drive Software Engineer Demand
Robots Could Hold Nearly 40 Percent of American Jobs by Early 2030s
5 AI Tools for Rocking Business Presentations
Could AI Have Prevented the Houston Metro Bus Incident?
Boost Your Digital Marketing with Business Intelligence

-Price fluctuations of different investment products against one another. This can, in return, enhance the benefits of inventory management.

-The geographical location of consumers who make financial choices

–Post-trade allocation preferences of different investors

-Trading patterns that shape hourly prices

-Volatility of prices traded on an open exchange

-Relative costs of goods and services in different markets

Banks and brokerage houses have been compiling this information for decades, but they haven’t had much of a way to analyze it until now. AI modules are taking big data elements like these and mining them for opportunities. Additionally, new IoT devices installed in regular teller stations are helping to identify patterns in how consumers deposit and withdraw funds. This may soon help to reduce the risk of cash crunches caused by a surfeit of sudden withdrawal orders given to s single physical bank.

AI and the World of Creditors

Most consumers are by now familiar with the concept of checking their annual credit score. Each time an institution decides to look at an individual’s credit score, it leaves a mark called an inquiry. Companies may pull someone’s score when they’re applying for a loan or asking for a job.

Soft pulls, such as when a consumer performs an annual credit check when doing their taxes, have little influence on a person’s overall score. Hard inquiries, such as those caused by a person applying for a new mortgage, are far more serious. While sophisticated mathematical models are in place to determine the severity of any credit pull, they’re often left up to a large degree of interpretation.

Credit bureaus are phasing in new scorecard technology that takes into account potential risk and past performance in order to apply their own rules more fairly to consumers. In order to prevent extending a line of credit to someone who may default on a loan, financial institutions are in turn building AI-based credit risk models. These models use predictive reasoning coupled to self-learning neural networks in order to determine the total risk of any specific loan.

Neural networks learn in the same manner that people do. By making use of a database stored on a virtualized file system, risk models can avoid repeating past mistakes. Consumers can then be offered better rates if a database finds no indication that they’re a risky investment.

Streamlining Compliance Tasks

News services continue to report on these trends in the financial sector. Nevertheless, computer security experts believe that regulatory and compliance tasks are going to be the area in which AI algorithms change the financial industry the most. In order to deliver value to operators, any AI needs to have a secure digital backbone. Data collected for analysis also has to be anonymized in many jurisdictions.

New laws like the General Data Protection Regulation (GDPR) require companies to be far more open about how they’re using client data. AI software can streamline the process of wiping any personally identifying information from stored data while automating the reporting process at the same time.

From a consumer’s standpoint, the biggest change will probably come in the form of increased account protections. The same predictive analytical technology that’s mining big data storage systems for actionable financial patterns will also occasionally notice irregularities. As these programs continue to mine, they’ll get better at spotting problems and alerting consumers to anything awry with their accounts. As a result, regular banking customers may soon reap the benefits of AI technology every bit as much as the institutions themselves.

TAGGED:AIartificial intelligenceautomationbankingbusiness intelligencefinancefinance industryfinancial intelligence
Share This Article
Facebook Pinterest LinkedIn
Share
ByPhilip Piletic
Follow:
My primary focus is a fusion of technology, small business, and marketing. I’m a writer, marketing consultant and guest author at several authority websites. In love with startups, the latest tech trends and helping others get their ideas off the ground. You can find me on LinkedIn.

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

business intelligence and data science for retail
Big DataBusiness IntelligenceBusiness RulesData ScienceExclusive

Trends In Business Intelligence And Data Science For Retail

9 Min Read

Connection Cloud: Realizing Value from Proliferating Siloed Data Stores and BI

7 Min Read
big data for seo
AnalyticsBig DataExclusive

How To Use Big Data For SEO In 2018

5 Min Read

You Don’t Need a Golden Ticket to Win With Analytics

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?