Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Top of the Data Quality Bell Curve
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > The Top of the Data Quality Bell Curve
Data ManagementData Quality

The Top of the Data Quality Bell Curve

MIKE20
MIKE20
3 Min Read
Image
SHARE

Image“Information is the value associated with data,” William McKnight explains in his book Information Management: Strategies for Gaining a Competitive Advantage with Data.

Image“Information is the value associated with data,” William McKnight explains in his book Information Management: Strategies for Gaining a Competitive Advantage with Data.  “Information is data under management that can be utilized by the company to achieve goals.”  Does that data have to be perfect in order to realize its value and enable the company to achieve its goals?  McKnight says no.

Data quality, according to McKnight, “is the absence of intolerable defects.”

“It is not the absence of defects.  Every enterprise will have those.  It is the absence of defects that see us falling short of a standard in a way that would have real, measurable negative business impact.  Those negative effects could see us mistreating customers, stocking shelves erroneously, creating foolish marketing campaigns, or missing chances for expansion.  Proper data quality management is also a value proposition that will ultimately fall short of perfection, yet will provide more value than it costs.”

More Read

Image
Are You Kidding Me, Facebook? Oh, You Got It Right
Maximizing Capacity Utilization as a Startup Premise
5 Webapps to Add to Your Security Tool Arsenal
Best Practices For Big Data Management In Cloud Computing
A Lot of Private-Sector Data Is Also Used for Public Good

“The proper investment in data quality is based on a bell curve on which the enterprise seeks to achieve the optimal ROI at the top of the curve.”

Mark Twain once said, “few things are harder to put up with than the annoyance of a good example.”

McKnight’s book provides many good examples, one based on an e-commerce/direct mail catalog/brick-and-mortar enterprise that regularly interacts with its customers.

“For e-commerce sales, address information is updated with every order.  Brick-and-mortar sales may or may not capture the latest address, and direct mail catalog orders will capture the latest address.  However, if I place an order and move two weeks later, my data is out-of-date: short of perfection.”

This is why I don’t like the anti-data-cleansing mantra of getting data right, the first time, every time—because even when you get data right the first time, it’s not the last time data has to be managed.

“Perfection is achievable,” McKnight continued, “but not economically achievable.  For instance, an enterprise could hire agents in the field to knock on their customers’ doors and monitor the license plates of cars coming and going to ensure that they know to the day when a customer moves.  This would come closer to perfect data on the current address of consumers, but at tremendous cost (not to mention that it would irritate the customer).”

Not only is data perfection the asymptote of data quality that’s not economically achievable, data perfection is not the goal of information management.  The goal of information management is to help the enterprise achieve its goals by providing data-driven solutions for business problems, which, by their very nature, are dynamic challenges that rarely have (or require) a perfect solution.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Bad 3D Pie Chart Alert! By Scientific American no less!

2 Min Read

Why Does Data Decay so Fast?

6 Min Read

Turning Data Into Content Through Social Media

6 Min Read
data management tools for small businesses
Big DataBusiness IntelligenceData ManagementExclusive

The Best Data Management Tools For Small Businesses

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?