Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Technology Integration and Big Data: Extracting Value
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Technology Integration and Big Data: Extracting Value
AnalyticsBest PracticesData ManagementDecision Management

Technology Integration and Big Data: Extracting Value

Sid Probstein
Sid Probstein
4 Min Read
Image
SHARE

Most people think of Big Data as being about volume, but there are other critical dimensions such as velocity and variety. In some cases, volume is certainly important, but the main driver of business value comes from looking across many disparate sources – both internal and external. A unified view is essential to making this happen.

Most people think of Big Data as being about volume, but there are other critical dimensions such as velocity and variety. In some cases, volume is certainly important, but the main driver of business value comes from looking across many disparate sources – both internal and external. A unified view is essential to making this happen.

Architecturally, there are a few different routes to achieve unified information access (UIA) across silos. The following diagram presents the three most prevalent options. 

 Image

More Read

Another way decision management and process interact
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics World New York City Conference Announces Speaker Line-Up
More Questioning Minds Needed (And Don’t Forget the Analytics)
Forecasting: It’s What’s Hot in Supply Chain Analytics

 

  1. Federated or virtualized approach. A client calls a Query Server and provides details on the information it needs. The Query Server connects to each of many sources, both structured and unstructured, passes the query off to each source, and then aggregates the results and returns them to the client. It’s complex to build a model like this, though it seems sensible when first examined because it doesn’t require any normalization. On the other hand, it is also a “brute force” approach that won’t perform well on cross-silo analysis when any result set is large.
  2. Pre-JOINed approach. Data is ingested and normalized into a single model following an ETL process. A Query Server then resolves queries against it. This model will be more consistent with respect to performance. However, it trades-off flexibility at query time because in order for a new relationship to be used, all of the data must be re-ingested and re-normalized. The ingestion logic is also challenging IAS data must be modeled prior to ingestion, and the keys between data items must be pre-defined.
  3. True agile UIA approach. Data is ingested and modeled just as it was in the source repository – typically in tables with keys identifying relationships. Flat repositories like file systems become tables also. This model is consistent with respect to performance, and offers complete flexibility at query time as any relationship, even one that is not formal in the data can be used. The ingestion logic is far simpler than in option #2, as it does not require a normalized model and thus avoids the ETL step.

Selecting one of these architectures depends heavily on the use case. For solutions that simply need to aggregate information from multiple sources, architecture #1 can be made to work, especially if most of the data is structured. Solutions that require relational algebra might try approach #2 if there are relatively few sources, with limited growth of sources over time (it seems to work particularly well for eCommerce sites where the catalog is central to the experience). Architecture #3 is most suited for integrating multiple silos, at scale, across multiple domains, or for solutions that may support numerous types of analysis. 

If you have an upcoming strategic project, use a UIA architecture. This will get your organization and colleagues thinking about how they can build solutions that connect the dots, instead of just creating more silos that require costly and time-consuming integration efforts.

 

TAGGED:UIAunified information access
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Business IntelligenceData WarehousingDecision ManagementKnowledge ManagementUnstructured Data

“Something is not Right!” – Don’t Ignore Your Gut When Analyzing Information

7 Min Read

Oracle Takes Endeca – a War of Acquisition?

5 Min Read

Habits of Innovation

4 Min Read

Information Availability: Exploiting the Full Value of Information to Drive Business

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?