Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 5 Hidden Skills for Big Data Scientists
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > 5 Hidden Skills for Big Data Scientists
Business IntelligenceCulture/LeadershipJobs

5 Hidden Skills for Big Data Scientists

matthewhurst
matthewhurst
5 Min Read
SHARE

Here are five hidden skills for big data scientists: 

1. Be Clear:  Is Your Problem Really A Big Data Problem?

Here are five hidden skills for big data scientists: 

1. Be Clear:  Is Your Problem Really A Big Data Problem?

There are many big data problems out there requiring huge compute scale, innovations in computation paradigms, vast storage space and so on. But just because your data takes up lots of disc space does not mean that you have a big data problem. Firstly, your data may be encoded in an inefficient format. XML, for example, can be incredible verbose (all those close tags and human readable text). Secondly, if your data changes over time it may change very slowly indicating that monitoring the difference between data sets is more important that importing complete data sets. Thirdly, you may be processing your information on a legacy architecture designed for low power CPUs or cores. Architecture should be data driven, meaning that you need to deeply understand the informational aspects of your data and not just the size of the data as it comes to you on disc.

2. Communicating About Your Data

Often, in large organization (I work for Microsoft and have worked at IBM in the past), the product requirements for data deliverables are high level. For example: we need these variables to be 99% accurate. This simplistic view of data – that a level of quality can be delivered in a specified time frame – is ignorant of the highly opportunistic nature of processes that improve the quality of data. Consequently, a data scientist needs to aggressively manage the communication about projects which transform and improve data sets. Do as much research as possible to minimize unknowns, but don’t sign contracts that involve both time and quality metrics!

3. Invest in Interactive Analytics, not Reporting

When you construct reports about your data products, you are answering a fixed set of questions. This is useful for monitoring, but it doesn’t provide a way to get at the unknown unknowns. It is only through interactions with data (often called slicing and dicing) that pockets of interest (problems and opportunities) are discovered. Rich, interactive tools may be perceived as a low priority and never quite got to. Avoid this peril!

4. Understand the Role and Quality of Human Evaluations of Data

When trying to determine how good your data product is, it is often the case that we employ an array of human judges to evaluate a sample of the data. The higher up the management chain you go, you tend to find a higher degree of respect for human judgement. There are many studies, however, that show that human judgements are not always as good as they are cracked up to be. In many cases, machines can do better than humans, they just tend to make different types of errors. On deeper inspection, human errors can be traced to the structure of incentives around the judgement process. Innovate in methods to compare data sets that help distinguish their relative quality without necessarily the expense of human assessment.

5. Spend Time on the Plumbing

How does data get in to your system? How does it flow? Are you sure every bit of information got in? With large scale data loading and processing systems, one doesn’t one a small number of failures to tip over the entire run. However, silently failing components can cause big headaches down the line when you are reporting your summary findings. Make sure there are no leaks in your pipeline!

 

TAGGED:big databig data scientists
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive
car expense data analytics
Data Analytics for Smarter Vehicle Expense Management
Analytics Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Negotiation Rules
AnalyticsBig Data

Big Data and Pricing Analytics Are Rewriting the Negotiation Rules

5 Min Read

3 Big Data Pitfalls and How to Avoid Them

5 Min Read
Cryptocurrency and big data analytics
AnalyticsBig Data

Big Data Offers Remarkable Valuation Tools for Cryptocurrency Speculators

6 Min Read
should big data be part of the genera curriculum
AnalyticsBig DataExclusive

Big Data Should be a Priority in Every College Curriculum

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?