Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Tips for Managing Priorities in a Data Team
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Tips for Managing Priorities in a Data Team
Best PracticesCollaborative DataCulture/LeadershipDecision Management

Tips for Managing Priorities in a Data Team

Jason Goto
Jason Goto
7 Min Read
SHARE

We work with a lot of different Data Teams, and most of them are faced with the same challenge:

How do you handle all of these competing requests for information?

We work with a lot of different Data Teams, and most of them are faced with the same challenge:

How do you handle all of these competing requests for information?

Below are some relatively easy-to-implement tips for dealing with this situation, but first let’s see why this can be so hard. The following are some of the more common reasons we’ve seen in the field:

  • Every request seems to be urgent. Most Data Teams are all too familiar with the expression “we need it yesterday”.
  • Every request seems to be very important. How can a Data Team not give priority to a request that comes from the CEO’s office or from the Board? What about situations where Public Relations needs good information to handle an emerging PR issue?
  • Requests for information are “free”, meaning that in most situations, the people requesting the information don’t have to pay for it. As a result, demand for information grows much faster than the capacity of the Data Team.

Overloaded Inbox

Here are some tips for Managing Priorities in a Data Team:

1) Keep a log of all active requests
As simple as it sounds, keeping an up-to-date log of all active requests is a “must have” enabler for managing competing requests in a Data Team. Many Data Team leads feel that they don’t need such a log, citing that they have it all under control, and that they are too busy to keep another list up to date. But such a log can help identify the capacity needed in the Data Team, and the skill mix that’s required. At minimum the Active Request Log should include the following information for each information request:

  • Who is asking for the information?
  • What are they asking for?
  • When did they ask for it?
  • Who in the Data Team is handling the request?
  • When did we promise to get it done?
  • What’s the status of the request (not started, active, completed, cancelled)?

In addition, the following information can be very helpful for planning purposes:

  • When was the information delivered?
  • How many hours of effort were involved in preparing it?
  • Was the due date pushed back? If so, how many times and by how many days?
  • Was there any feedback from person who requested the information?

This list can be as simple as a whiteboard, a shared spreadsheet, a SharePoint list, or a Google Doc. The hard part is having the discipline to keep it up to date.

2) Review the log as a Data Team every day
Having a daily 5 minute meeting as a Data Team may seem like a big burden. Who needs another meeting in their already-too-busy schedule? But if done right, a daily 5 minute meeting to review the Active Request Log can help a too-busy Data Team work together to make sure that the most important things are being worked on every day. Specific things that can be clarified during this 5 minute check-in include:

  • What must we get done today?
  • What must we get done in the next couple of days?
  • Who has the lead on each piece of work?
  • What requests need more support?
  • What counts as “good enough” for the requests that we’ll be working on today and tomorrow?

This quick meeting can set the entire Data Team in the right direction at the start of each day, and in doing so, go a long way to reducing the last-minute scramble, and make sure that the Data Team works to it’s full potential as a team.

3) When handling new requests, use the active request log to set expectations
If you have the discipline to do the above 2 steps, then after not too long you will have great information for managing expectations with new requests. For example, if there is a last minute urgent and important request for information, then at minimum you will now know:

  • How long will this really take us to complete?
  • Are there any recent requests for information that are similar to this one? If so, can that requests be modified to meet this urgent need?
  • Will any active requests not be completed on time, as a result of this new urgent request? If so, is the person making this new urgent request willing to take the heat?

In a lot of respects, most Data Teams are carrying out all of these three functions, but often it’s in people’s heads. By adding a little bit of tracking and daily discipline, the Data Team can significantly improve their work effectiveness, and at the same time better meet the needs of their customers.

We’re sure you have perspectives of your own on this subject. If you so, please share your thoughts and ideas.

Note: What is a Data Team?
When we refer to “Data Teams” it’s a catch all for groups of technical, statistical, and subject-matter domain experts that are involved in providing information to support their organization. These teams are sometimes called “Business Intelligence”, “Decision Support”, or “Information Management”, but they can also be internal consultants such as “Operations Analysts”, “Strategic Information” or “Research”. Many of these concepts equally apply to teams of Data Scientists.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

What You Need to Know About Duqu

6 Min Read
data science
Big DataCollaborative DataCulture/Leadership

DataKind + TeraData = A Perfect Data-Do-Good Partnership

4 Min Read

Top Ten Root Causes of Data Quality Problems: Part 2

5 Min Read

Data, Data Everywhere

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?