Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Low-Down on Analytical Data Integration
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > The Low-Down on Analytical Data Integration
Business Intelligence

The Low-Down on Analytical Data Integration

EvanLevy
EvanLevy
3 Min Read
SHARE

I’ve been hearing a bit lately on the difference between “analytical data integration” and “operational data integration.” I don’t agree with the distinction any more than I agree with analytical versus operational MDM. In this blog post, I’ll characterize analytical data integration. Warning: It won’t be pretty. In my next one, I’ll take on operational data integration (ditto).

The analytics folks build their own specialized ETL jobs to pull data from operational systems and business applications and often ignore data cleansing, transforming the data on their own particular needs. Most of the time, this is a custom activity. Each time there’s a new report or data mart, new ETL development occurs.

It’s important to realize that data integration is not just about moving data between databases: it’s about moving and merging multiple data sources independent of their format or function. We’re talking more than just relational databases here: we’re talking applications, flat files, objects, APIs, data services (SOA), hierarchical structures, and dozens of others.

Everyone acknowledges that this work consumes about 40 percent of the overall cost of the analytical program. Stovepipe data…

More Read

A really fresh look at business analytics
AI Drives The Inception Of Three Cutting-Edge Smart Home Products
Change is here. Goodbye to Yahoo!, and Hello to Barnes and Noble [4]
What About the Rest of Us?
Follow your SQL Server on Twitter!

I’ve been hearing a bit lately on the difference between “analytical data integration” and “operational data integration.” I don’t agree with the distinction any more than I agree with analytical versus operational MDM. In this blog post, I’ll characterize analytical data integration. Warning: It won’t be pretty. In my next one, I’ll take on operational data integration (ditto).

The analytics folks build their own specialized ETL jobs to pull data from operational systems and business applications and often ignore data cleansing, transforming the data on their own particular needs. Most of the time, this is a custom activity. Each time there’s a new report or data mart, new ETL development occurs.

It’s important to realize that data integration is not just about moving data between databases: it’s about moving and merging multiple data sources independent of their format or function. We’re talking more than just relational databases here: we’re talking applications, flat files, objects, APIs, data services (SOA), hierarchical structures, and dozens of others.

Everyone acknowledges that this work consumes about 40 percent of the overall cost of the analytical program. Stovepipe data maintenance activities are rampant, and wasteful. In reality, a lot of ETL work involves a depressing amount of duplicate effort. It’s rare that a business application doesn’t already have at least one piece of ETL written against it. The urge to operationally integrate data can be seen as a remedy for this. But is it really?

Stay tuned.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Fascination with Hadoop pushes, pulls Big Data analytics into mainstream. (Part One)

6 Min Read

How to Position Big Data

8 Min Read

How One Post Quintupled My Blog Visitors

4 Min Read
Image
Business IntelligenceData WarehousingDecision ManagementKnowledge ManagementUnstructured Data

“Something is not Right!” – Don’t Ignore Your Gut When Analyzing Information

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?