Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Fast Logistic Regression on Big Data with Commodity Hardware? No Problem.
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Fast Logistic Regression on Big Data with Commodity Hardware? No Problem.
Analytics

Fast Logistic Regression on Big Data with Commodity Hardware? No Problem.

DavidMSmith
DavidMSmith
3 Min Read
SHARE

You might think that doing advanced statistical analysis on Big Data is out of reach for those of us without access to expensive hardware and software. For example, back in April SAS was proud to demonstrate being able to run logistic regression on a billion records (and “just a few” variables) in less than 80 seconds.

You might think that doing advanced statistical analysis on Big Data is out of reach for those of us without access to expensive hardware and software. For example, back in April SAS was proud to demonstrate being able to run logistic regression on a billion records (and “just a few” variables) in less than 80 seconds. But that feat required some serious hardware: two racks of Greenplum’s Data Computing Appliance (DCA). Each rack of the DCA has 16 servers, 192 Intel cores, and 768 GB of RAM, and pricing starts at $1 million. Add on SAS license fees for its High Performance Analytics suite, and you’re talking serious money.

We’re currently beta testing Revolution R Enterprise 5.0, which includes new features for using the power of a cluster of commodity hardware machines running Windows Server to perform statistical analysis on huge data sets. In the video below, Revolution Analytics’ Sue Ranney takes the beta for a spin, and uses the RevoScaleR package to run a logistic regression on 1.2 billion records of data on our 5-node cluster:

 

For comparison, each of the five nodes in our cluster has 16 GB of RAM with an Intel Xeon E3-1230, 3.2Ghz 8M cache quad-core processor, 16 Gb of RAM and a 1 TB hard drive. Total hardware cost: around $5,000. All the machines are running Windows Server 2008 with the Windows HPC Pack and Revolution R Enterprise 5.0 beta 1.

More Read

big data for recruitment
Transforming HR Recruitment Practices with Big Data
James Harden and Data Visualization
Cambridge Semantics Makes Intelligent Use of Information
Lessons from F1 racing: Timely Decisions Get You on the Podium
Massive DDoS attack spotlights internet choke point

And the time for that 1.2 billion row regression? 75 seconds: just as fast, and at less than 1% of the hardware cost.  See the details in the video linked below.

Revolution Analytics YouTube Channel: Logistic Regression in R with a Billion Rows

TAGGED:hardware
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How to succeed in the enterprise without really trying: Apple’s crunch

5 Min Read

Intel’s Next Generation Chip Architecture

8 Min Read

Investing in Data Center Efficiencies: Part Two

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?