Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Inferring Intent on Mobile Devices
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Inferring Intent on Mobile Devices
AnalyticsPredictive AnalyticsSentiment AnalyticsText AnalyticsWeb Analytics

Inferring Intent on Mobile Devices

ChrisDixon
ChrisDixon
6 Min Read
SHARE

[Ex-Google CEO Eric] Schmidt recently said that while the Google Instant predictive search technology helps shave an average of 2 seconds off users’ queries, the next step is “autonomous search.” This means Google will conduct searches for users without them having to manually conduct searches. As an example, Schmidt said he could be walking down the streets of San Francisco and receive information about the places around him on his mobile phone without having to click any buttons. “Think of it as a serendipity engine,” Schmidt said.

[Ex-Google CEO Eric] Schmidt recently said that while the Google Instant predictive search technology helps shave an average of 2 seconds off users’ queries, the next step is “autonomous search.” This means Google will conduct searches for users without them having to manually conduct searches. As an example, Schmidt said he could be walking down the streets of San Francisco and receive information about the places around him on his mobile phone without having to click any buttons. “Think of it as a serendipity engine,” Schmidt said. “Think of it as a new way of thinking about traditional text search where you don’t even have to type.”  – eWeek

When users type phrases into Google, they are searching, but also expressing intent. To create the “serendipity engine” that Eric Schmidt envisions would require a system that infers users’ intentions.

Here are some of the input signals a mobile device could use to infer intent.

More Read

agile framework
Metric-Driven Agile for Big Data
The analyst function is dead
The Data Analytics of Hurricane Irene
IBM – Conversations for a Smarter Planet: 7 in a SeriesThe…
Deliver an Excellent Customer Experience Using Big Data

Context

Location: It is helpful to break location down into layers, from the most concrete to the most abstract:

1) lat / long – raw GPS coordinates

2) venue – mapping of lat / long coordinates to a venue.

3) venue relationship to user – is the user at home, at a friend’s house, at work, in her home city etc.

4) user movement – locations the user has visited recently.

5) inferred user activity – if the user is at work during a weekday, she is more likely in the midst of work. If she is walking around a shopping district on a Sunday away from her home city, she is more likely to want to buy something. If she is outside, close to home, and going to multiple locations, she is more likely to be running erands.

Weather: during inclement weather user is less likely to want to move far and more likely to prefer indoor activities.

Time of day & date: around mealtimes the user is more likely to be considering what to eat. On weekends the user is more likely to be doing non-work activities. Outside at night, the user is more likely to be looking for bar/club/movie etc.  Time of days also lets you know what venues are open & closed.

News events near the user: they are at the pro sporting event, an accident happened nearby, etc.

Things around the user: knowing not just venues, but activities (soccer game), inventories (Madden 2011 is in stock at BestBuy across the street), events (concert you might like is nearby), etc.

These are just a few of the contextual signals that could be included as input signals.

Taste

The more you know about users’ tastes, the better you can infer their intent. It is silly to suggest a great Sushi restaurant to someone who dislikes Sushi. At Hunch we model taste with a giant matrix. One axis is every known user (the system is agnostic about which ID system – it could be Facebook, Twitter, a mobile device, etc), the other axis is things, defined very broadly: product, person, place, activity, tag etc.  In the cells of the matrix are either the known or predicted affinity between the person and thing.  (Hunch’s matrix currently has about 500M people, 700M items, and 50B known affinity points).

Past expressed intent

– App actions:  e.g. user just opened Yelp, so is probably looking for a place to go.

– Past search actions: user’s recent (desktop & mobile) web searches could be indications of later intent.

– Past “saved for later” actions:  user explicitly saved something for later e.g. using Foursquare’s “to do” functionality.

Behavior of other people

– Friends:  The fact that a user’s friends are all gathered nearby might make her want to join them.

– Tastemates: That someone with similar tastes just performed some actions suggests the user is more likely to want to perform the same actions.

– Crowds: The user might prefer to go toward or avoid crowds, depending on mood and taste.

How should an algorithm weight all these signals? It is difficult to imagine this being done effectively anyway except empirically through a feedback loop. So the system suggests some intent, the user gives feedback, and then the system learns by adjusting signal weightings and gets smarter.  With a machine learning system like this it is usually impossible to get to 100% accuracy, so the system would need a “fault tolerant” UI.  For example, pushing suggestions through modal dialogs could get very annoying without 100% accuracy, whereas making suggestions when the user opens an application or through subtle push alerts could be non-annoying and useful.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Predictive Analytics Gets Closer

7 Min Read

Everyware: The dawning age of ubiquitous computing | A book by…

1 Min Read

First Results from the Predictive Analytics in the Cloud Survey

3 Min Read

Big Data Analytics a Key Enabler for Social CRM – Airlines Case Study

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?