Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: According to Microsoft, the fourth paradigm of science is data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > According to Microsoft, the fourth paradigm of science is data
Data Mining

According to Microsoft, the fourth paradigm of science is data

DavidMSmith
DavidMSmith
3 Min Read
SHARE

In scientific discovery, the first three paradigms were experimental, theoretical and (more recently) computational science. A new book of essays published by Microsoft (and available for free download — kudos, MS!) argues that a fourth paradigm of scientific discovery is at hand: the analysis of massive data sets. The book is dedicated to the late Microsoft researcher Dr Jim Gray, who pioneered the idea with the catchphrase: “It’s the data, stupid”. The basic idea is that our capacity for collecting scientific data has far outstripped our present capacity to analyze it, and so our focus should be on developing technologies that will make sense of this “Deluge of Data” (as this New York Times review of the book — well worth a read — calls it). 

Dr Gray’s call-to-arms was not to develop isolated super-powerful super-computers but “to have a world in which all of the science literature is online, all of the science data is online, and they interoperate with each other.” This dream is already close to a reality in some scientific domains like astronomy, where advanced instruments routinely generate petabytes of data available for public analysis. And …



In scientific discovery, the first three paradigms were experimental, theoretical and (more recently) computational science. A new book of essays published by Microsoft (and available for free download — kudos, MS!) argues that a fourth paradigm of scientific discovery is at hand: the analysis of massive data sets. The book is dedicated to the late Microsoft researcher Dr Jim Gray, who pioneered the idea with the catchphrase: “It’s the data, stupid”. The basic idea is that our capacity for collecting scientific data has far outstripped our present capacity to analyze it, and so our focus should be on developing technologies that will make sense of this “Deluge of Data” (as this New York Times review of the book — well worth a read — calls it). 

More Read

Data Mining Research Awards 2010
Can Fossil Analysis Software Help Us Plan Curriculum?
Forrester on event processing and business rules
Calculate the Value of Your Facebook Page
Practice Fusion’s Partnership with Merck Shows the Future of Medical Data

Dr Gray’s call-to-arms was not to develop isolated super-powerful super-computers but “to have a world in which all of the science literature is online, all of the science data is online, and they interoperate with each other.” This dream is already close to a reality in some scientific domains like astronomy, where advanced instruments routinely generate petabytes of data available for public analysis. And with further developments in distributed and high-performance computing, with freely-available high-scale data management tools like Hadoop, and with advanced open-source data-analysis tools like R rapidly adapting to the scales of these data sets, the fourth paradigm is certain to become a mainstream reality in other scientific domains as well. 

Microsoft Research: The Fourth Paradigm: Data-Intensive Scientific Discovery

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Big DataData MiningData Quality

Data Mine or Data Yours? Info Wars and the Escalating Arms Race

3 Min Read

Better than Brute Force: Big Data Analytics Tips

10 Min Read

Amazon Elastic MapReduce, and other stuff I don’t have time to grok yet

4 Min Read

“Average” Statistics that Bruise Our Ears

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?