Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Argument For & Against Map/Reduce
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > The Argument For & Against Map/Reduce
Data Visualization

The Argument For & Against Map/Reduce

TonyBain
TonyBain
3 Min Read
SHARE

The last 24 months has seen the introduction of Map/Reduce functionality into the data processing arena in various forms.  Map/Reduce is a framework for developing scalable data processing functionality, and was popularized by Google (see this earlier post).

Pure players like Hadoop are starting to find their own niche, helped by organizations such as Cloudera.  However there has been a number of for & against arguments relating to Map/Reduce functionality inside the database.

These arguments are now really serving a moot point.  Customers have recognized value in Map/Reduce prompting some (b)leading edge database vendors to introduce such functionality into their platforms (primarily database vendors providing analytics platforms).  Even some of the database platform vendors who were very critical of Map/Reduce 12 months or so ago have softened their position, either embracing Map/Reduce or admitting that Map/Reduce does has benefits in some scenarios for large scale data processing and analytics.  If customers see the value of having Map/Reduce in the database and are excited by it, then I don’t want to spend any more time debating if it should be there or not.

Our attention …

More Read

First Look – TRIAD 8.5 and Decision Graph
America’s Favorite Pastime is Having a Data-Driven Renaissance
Retail Data Monetization: Are you sitting on top of a retail goldmine?
Survey Shows Business Intelligence Wants and Struggles of SMBs
Top 5 Reasons “Data Geek” Jobs are on the Rise

The last 24 months has seen the introduction of Map/Reduce functionality into the data processing arena in various forms.  Map/Reduce is a framework for developing scalable data processing functionality, and was popularized by Google (see this earlier post).

Pure players like Hadoop are starting to find their own niche, helped by organizations such as Cloudera.  However there has been a number of for & against arguments relating to Map/Reduce functionality inside the database.

These arguments are now really serving a moot point.  Customers have recognized value in Map/Reduce prompting some (b)leading edge database vendors to introduce such functionality into their platforms (primarily database vendors providing analytics platforms).  Even some of the database platform vendors who were very critical of Map/Reduce 12 months or so ago have softened their position, either embracing Map/Reduce or admitting that Map/Reduce does has benefits in some scenarios for large scale data processing and analytics.  If customers see the value of having Map/Reduce in the database and are excited by it, then I don’t want to spend any more time debating if it should be there or not.

Our attention needs to move along from debating if Map/Reduce is something we should have in our database toolset or not.  We now need to start thinking about how we use this new tool effectively and what new possibilities Map Reduce opens up.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

multi model ai
How Teams Using Multi-Model AI Reduced Risk Without Slowing Innovation
Artificial Intelligence Exclusive
top data visualization tools
5 Top Data Visualization Tools for Research Projects
Big Data Data Visualization
cybersecurity tools
Evaluating the Best Value Cybersecurity Platforms for Enterprises
Exclusive IT Security
ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Cloud Computing’s RAIC? What’s that?

31 Min Read
data tools
AnalyticsBest PracticesBig DataBusiness IntelligenceCulture/LeadershipData ManagementData MiningData VisualizationDecision ManagementKnowledge Management

Democratizing Data with Decision Management

6 Min Read

What Is Insight? Is It Visual?

6 Min Read
data visualization and data analytics
AnalyticsBest PracticesBig DataData ManagementData VisualizationExclusive

Avoid Analytics Mistakes by Being Aware of Misinformation Visualization

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?