Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Problem with the Relational Database
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > The Problem with the Relational Database
Data MiningData Warehousing

The Problem with the Relational Database

TonyBain
TonyBain
5 Min Read
SHARE

The relational database has been the core mechanism for structured data storage and retrieval for the past 30 years.  My career so far has focused around the relational database, whether it be from a development, administrator or investment perspective.  In all this time the RDB has been the best generic option available for developers building data centric applications.  The generic nature of the RDB has made it suitable for wide mix of application requirements, be they heavily transaction processing orientated or heavily data analytics related.

However over the few years we have been witnessing a slow shift aware from the “RDBMS” for everything trend that we saw over the preceding decade.  And this is occurring because the demands we are placing on data in terms of scale and volume are growing to a point where the most generic platform is underperforming and instead more specialist database technologies are starting to be selected based on their closer fit with the requirement.

This trend has started in and is therefore more visible in the data analytics space.  The specialist solutions have be slowly cropping up over the last 5 years and now today it wouldn’t be that unusual for …

More Read

Data Mining: A new weapon in the fight against Medicaid fraud
Business Intelligence: Decisions, Decisions
The Promise and Perils of Text Analytics — Privacy
SIGIR: Meet the Who’s Who of Search and Information Retrieval
Another Useless Article on How to Conduct Market Research in a Recession

The relational database has been the core mechanism for structured data storage and retrieval for the past 30 years.  My career so far has focused around the relational database, whether it be from a development, administrator or investment perspective.  In all this time the RDB has been the best generic option available for developers building data centric applications.  The generic nature of the RDB has made it suitable for wide mix of application requirements, be they heavily transaction processing orientated or heavily data analytics related.

However over the few years we have been witnessing a slow shift aware from the “RDBMS” for everything trend that we saw over the preceding decade.  And this is occurring because the demands we are placing on data in terms of scale and volume are growing to a point where the most generic platform is underperforming and instead more specialist database technologies are starting to be selected based on their closer fit with the requirement.

This trend has started in and is therefore more visible in the data analytics space.  The specialist solutions have be slowly cropping up over the last 5 years and now today it wouldn’t be that unusual for an organization to choose a specialist data analytics database platform (such as those offered from Netezza, Greenplum, Vertica, Aster Data or Kickfire) over a generic database platform offered by IBM, Microsoft, Oracle or Sun for housing data for high end analytics.

My argument is that while I see the traditional generic RDBMS remaining the platform of choice for most generic application requirements in the foreseeable future two breakaway alternative paths are also emerging.  The first is that I mentioned above, a reduction in the generic aspects of the RDBMS with a specific focus on high end data analytics functionality.  The second, which I see starting to emerge right now, is the opposite of this.  A reduction in the generic nature of the RDBMS with a focus on the specific requirements of high end transaction processing.

Starting tomorrow I will be presenting a series of posts that discuss real world issues facing the RDBMS when used in transaction processing environments that are being encountered today to highlight why this alternative path in transaction processing is appearing then following this I will present a series of posts on the technology that is emerging in an attempt to address these weaknesses.


Link to original postInnovations in information management

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Search User Interfaces and Data Quality

6 Min Read

10th Annual ECCMA Conference (ISO 8000 Data Quality Conference)

5 Min Read

Adventures in Data Profiling (Part 5)

8 Min Read

Poor Quality Data Sucks

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?