Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Big Data Cheat Sheet: What Executives Want to Know
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > A Big Data Cheat Sheet: What Executives Want to Know
Best PracticesBig DataData WarehousingHadoop

A Big Data Cheat Sheet: What Executives Want to Know

TamaraDull
TamaraDull
7 Min Read
Image
SHARE

Image

Contents
1. What can Hadoop do that my data warehouse can’t?2. We’re not doing “big” data, so why do we need Hadoop?3. Is Hadoop enterprise-ready?4. Isn’t a data lake just the data warehouse revisited?5)  What are some of the pros and cons of a data lake?

In April, I was given the opportunity to present An Executive’s Cheat Sheet on Hadoop, the Enterprise Data Warehouse and the Data Lake at the SAS Global Forum Executive Conference in Dallas. During this standing-room only session, I addressed these five questions:

Image

In April, I was given the opportunity to present An Executive’s Cheat Sheet on Hadoop, the Enterprise Data Warehouse and the Data Lake at the SAS Global Forum Executive Conference in Dallas. During this standing-room only session, I addressed these five questions:

More Read

Relational DB Pros: The Times They Are A-Changin’
In the Age of Big Data, Will Academia Ever Be the Same?
Proctor & Gamble – A Case Study in Business Analytics
An informed decision
Developing a Big Data Strategy Was Never Easier
  1. What can Hadoop do that my data warehouse can’t?
  2. We’re not doing “big” data, so why do we need Hadoop?
  3. Is Hadoop enterprise-ready?
  4. Isn’t a data lake just the data warehouse revisited?
  5. What are some of the pros and cons of a data lake?

Following is a recap of my comments, along with a few screenshots. See what you think.

1. What can Hadoop do that my data warehouse can’t?

The short answer is: (1) Store any and all kinds of data more cheaply and (2) process all this data more quickly (and cheaply).

The longer answer is: I made reference to my opening “soapbox” statement – “Big data is not new.” (See image below.) They say that 20% of the data we deal with today is structured data (see orange-box examples). I also call this traditional, relational data. The other 80% is semi-structured or unstructured data (see blue-box examples), and this is what I call “big” data. 

Image

Are any of these blue-box example data types new? Of course not. We’ve been collecting, processing, storing, and analyzing all this data for decades. What we haven’t been able to do very well, however, if at all, is mix the orange- and blue-box data together.

So here’s what’s new: We now have the technologies to collect, process, store, and analyze all this data together. In other words, we can now mix-&-match the orange- and blue-box data together – at a fraction of the cost and time of our traditional, relational systems.

2. We’re not doing “big” data, so why do we need Hadoop?

I proposed six common Hadoop use cases—three of which don’t require “big” data at all to take full advantage of Hadoop. These use cases come from my white paper called The Non-Geek’s Big Data Playbook: Hadoop and the Enterprise Data Warehouse.

Here’s a brief summary of each use case:

  • Stage structured data. Use Hadoop as a data staging platform for your data warehouse.
  • Process structured data. Use Hadoop to update data in your data warehouse and/or operational systems.
  • Archive all data. Use Hadoop to archive all your data on-premises or in the cloud.
  • Process any data. Use Hadoop to take advantage of non-integrated and unstructured data that’s currently unavailable in your data warehouse.
  • Access any data (via data warehouse). Use Hadoop to extend your data warehouse and keep it at the center of your organization’s data universe.
  • Access any data (via Hadoop). Use Hadoop as the landing platform for all data and exploit the strengths of both the data warehouse and Hadoop.

If you’d like to see these use cases further explained and demonstrated with some easy-to-understand visuals, I invite you to download the white paper.

3. Is Hadoop enterprise-ready?

I have two answers to this question:

  • For your organization: Maybe.
  • For all organizations: No.

It all depends on what and how you want to use Hadoop in your organization. If you simply want to use it as an additional (or alternative) storage repository and/or as a short-term data processor, then by all means, Apache Hadoop is ready for you.

However, if you want to go beyond data storage and processing and are looking for some of the same data management and analysis capabilities you currently have with your existing relational systems, you will first need to explore the vast ecosystem of Hadoop-related open source and proprietary projects and products. This will not be a small undertaking.

Because many of these newer Hadoop-related technologies are still maturing—quite rapidly, I might add—that’s why I say Hadoop—as in the Hadoop ecosystem—isn’t 100% ready for the enterprise.

4. Isn’t a data lake just the data warehouse revisited?

Many of us have been learning more about the data lake, especially in the last 6 months. Some suggest that the data lake is just a reincarnation of the data warehouse—in the spirit of “been there, done that.” Others focus on how much better this “shiny, new” data lake is, while others are standing on the shoreline screaming, “Don’t go in! It’s not a lake—it’s a swamp!”

All kidding aside, the commonality I see is that they are both data storage repositories. Beyond that, the table below highlights some key differences. This is, by no means, an exhaustive list, but it does get us past this “been there, done that” mentality. A data lake is not a data warehouse.

Image

5)  What are some of the pros and cons of a data lake?

Some of you may be aware of the Data Lake Debate blog series I recently participated in with my colleague, Anne Buff, on SmartData Collective. I took the Pro stance, Anne took the Con stance, and our boss, Jill Dyché, moderated.

It was an intense 8 weeks of discussion—loosely structured like a Lincoln-Douglas debate—and many key points about the data lake were addressed. During my presentation, I summed up these key points using a SWOT diagram:

Image

If you’re interested in learning more about the data lake, I invite you to:

  • Check out the Data Lake Debate blog series; and/or
  • Register for the Data Lake Debate webcast on May 27th where Anne and I will “go live” with the debate.

And there you have it—your big data cheat sheet. Please share with others if you’ve found it helpful. Thanks!

TAGGED:The Big Data MOPS Series
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

power supplies for ATX for data scientists
Why Data Scientists Should Care About SFX Power Supplies
Big Data Exclusive
AI for website optimization
Free Tools to Test Website Accessibility
Artificial Intelligence Exclusive
Generative AI models
Thinking Machines At Work: How Generative AI Models Are Redefining Business Intelligence
Artificial Intelligence Business Intelligence Exclusive Infographic Machine Learning
image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Best PracticesBig DataCulture/LeadershipPrivacySocial Data

A Cautionary Tale: Are You Clicking Your Privacy (or the Privacy of Others) Away?

7 Min Read
Image
Best PracticesBig DataSecurity

If You Think Data Security is IT’s Responsibility, Think Again

5 Min Read
Image
Big DataPrivacySecuritySocial Data

It’s Your Life, Starring Your Data

6 Min Read
Image
Best PracticesBig DataData ManagementHadoop

The Data Lake: A More Balanced Perspective

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?