Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Three Ways Big Data Is Revamping Manufacturing Processes
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Three Ways Big Data Is Revamping Manufacturing Processes
AnalyticsBest PracticesBig DataPredictive Analytics

Three Ways Big Data Is Revamping Manufacturing Processes

Yana Yelina
Yana Yelina
6 Min Read
big data and AI
Shutterstock Licensed Image - By Wright Studio
SHARE

From eCommerce and healthcare to fintech and sports, the modern world is all about big data. And the official stats echo this idea: By 2020, the global big data market is estimated to exceed the $57 billion mark.

Contents
  • Betting on big data to reduce downtime
  • Mitigating supply chain risks in the big data age
  • Enhancing product quality by dint of big data
    • There’s more to the story

The manufacturing industry with its competitive challenges and quest for high productivity is also ready to join the big data boom. But can this tech reign in production facilities? To get the right answer, let’s delve into the major benefits of big data in manufacturing.

Betting on big data to reduce downtime

Downtime is an absolute nightmare for every industrial sector given the negative outcomes such stoppages cause. Manufacturers deal with an average 800 hours of downtime annually, which means from five to 20 percent in productivity losses.

However, there’s no time for glass-half-empty moods. General Electric (GE), for example, shared their best practices at the ‘Minds and Machines Europe’ event in London. Jeff Immelt — GE’s former CEO — revealed how a combination of tech fosters change for the company across different sectors, such as healthcare, energy, and aviation.

More Read

Image
From Operations to Insights: Business Analytics Meets NoSQL
Time for an Information Management Strategy?
How Big Data Is Changing Insurance Forever
The Real Value of Big Data
Data Analytics Helps with Competitor Research

According to Immelt, big data analytics coupled with materials science and “intelligent machines” equipped with sensor technology can harness the power of industrial data in real time, bringing substantial benefits.

As a result, the corporation managed to automate its manufacturing processes, optimize performance, and eliminate downtime by predicting when a machine or a certain component will fail. And yearly $45 billion in revenue is tangible proof of their success.

Here’s an example of how remote monitoring and early diagnosis of problems take place in aviation. A set of sensors connected to gas engines captures data every 30 seconds.

Then, the Hadoop software comes into play. Its fault-tolerant, redundant HDFS file system splits the collected data into manageable chunks and distributes them across thousands of nodes, preparing the ground for extremely fast MapReduce-based parallel computations.

Such large-scale data processing effectively deals with the three Vs of big data — volume, velocity, and variety — and helps GE correct the possible manufacturing flaws. Jeff Immelt claims that boosting at least one percent of gas engine performance a year via Hadoop-enabled analytics saves customers $2 billion.

Mitigating supply chain risks in the big data age

Supply chain is fraught with uncertainties. If you want to reduce the possible risks and build good relationships with retailers and customers alike, you’ll need data analytics, again. In supply chain, big data applications are revolving around three main silos: traceability, procurement, and warehousing.

For example, IoT-facilitated data — fruitfully used to generate meaningful insights — allows manufacturers to track goods and mitigate unfavorable situations. This may include making on-the-spot decisions on the optimal track routes due to food shortage or identifying instances of food contamination in a split second.

According to the Chartered Institute of Procurement and Supply, natural disasters and extreme weather conditions constitute the top causes of supply chain disruption. To make sure these pessimistic scenarios won’t lead to business interruption, companies can analyze weather stats for tornadoes, earthquakes, hurricanes, etc. and use predictive analytics to calculate the probabilities of delays.

Moreover, by mining historical and real-time data from external and online sources — such as financial analyst recommendations and media reviews — manufacturers can spot future trends and get valuable time for contingency measures in case of a financial crisis. Other applications of big data include maintaining the optimum level of inventory and improving procurement decisions.

Enhancing product quality by dint of big data

Quality control (QC) is another area where big data can show its worth. To wit, the multinational giant Intel has been using predictive analytics since 2012 to accelerate the production of their chips — at the same time increasing product quality.

By scrutinizing historical data gathered during manufacturing, Intel significantly reduces the number of tests every chip should go through. “Instead of running every single chip through 19,000 tests, we can focus tests on specific chips to cut down test time,” says Ron Kasabian, general manager for Intel’s data center group. “And as we’re ramping up new chips, we uncover lots of bugs and fix them.”

Moreover, big data assists Intel in testing equipment. By capturing and analyzing sensor-generated information, the corporation detects failures in its manufacturing line early on and takes preventive measures. This data-driven method has become a key enabler of enhanced QC as well as a strategic cost-cutter. In 2012, the corporation managed to save $3 million in manufacturing costs.

There’s more to the story

We’ve lifted the veil on just three applications of big data in manufacturing. Companies offering big data consulting services will definitely extend this list — depending on your business model and goals.

If you haven’t capitalized on data yet, get a heads up about the potential benefits. These include eliminating downtime, improving supply chain management, accelerating production and innovation, providing better services, increasing customer satisfaction rates, balancing costs, and more.

TAGGED:AI and big databig databig data manufacturingindustrial internet
Share This Article
Facebook Pinterest LinkedIn
Share
ByYana Yelina
Follow:
Yana Yelina is a tech journalist who loves beautiful content. Her articles have been featured on ITProPortal, Business2Community, UX Matters, and Datafloq, to name a few. Yana is passionate about the untapped potential of technology and explores the perks it can bring businesses of every stripe.

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

can deep learning improve construction
ExclusiveMachine Learning

Can Deep Learning Improve Construction Snag Lists?

9 Min Read
big data and smart technology in healthcare
Big Data

How Data and Smart Technology Are Helping Hospitalists

8 Min Read
mobile tracking data
AnalyticsBig DataExclusivePredictive Analytics

Is Predictive Analytics Changing The Future Of Mobile Phone Monitoring?

11 Min Read

Big Data Redraws the IT Landscape

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?