Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Why Data Sampling Leads to Bad Decisions
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Why Data Sampling Leads to Bad Decisions
Business IntelligencePredictive Analytics

Why Data Sampling Leads to Bad Decisions

BradTerrell
BradTerrell
3 Min Read
SHARE

Sampling

New technologies enabling terabyte-scale data analysis are causing a shift in the market away from sampling techniques. This is good because reducing sampling results in more accurate predictive analysis, which leads to better decisions and ultimately produces good things like:

  • Increased campaign response rates
  • Increased website conversion rates
  • Increased audience engagement
  • Increased customer loyalty

Chris Anderson’s article, “The Petabyte Age”, presents a number of compelling examples of how this shift away from sampling is changing the world (though I don’t agree with his related notion that simply having more data makes the scientific method obsolete).

Judah Phillips cites “Sampling, Sampling, Sampling” as one of the “reasons why web analytics data quality can stink”, stating that “… sampling… opens the possibility that you miss key data.” …

More Read

Connecting the Enterprise — With Analytics
What is wrong with OR in business rules?
Local Vodka in Newburyport: Why Not?
Request to Complete Howard Dresner’s BI Market Survey
Get People and Processes in Line Before Social BI Changes Decision Game

Sampling

New technologies enabling terabyte-scale data analysis are causing a shift in the market away from sampling techniques. This is good because reducing sampling results in more accurate predictive analysis, which leads to better decisions and ultimately produces good things like:

  • Increased campaign response rates
  • Increased website conversion rates
  • Increased audience engagement
  • Increased customer loyalty

Chris Anderson’s article, “The Petabyte Age”, presents a number of compelling examples of how this shift away from sampling is changing the world (though I don’t agree with his related notion that simply having more data makes the scientific method obsolete).

Judah Phillips cites “Sampling, Sampling, Sampling” as one of the “reasons why web analytics data quality can stink”, stating that “… sampling… opens the possibility that you miss key data.”

Anand Rajaraman gave a compelling presentation at Predictive Analytics World last month entitled, “It’s the Data, Stupid!”, which built on ideas from his blog post, “More data usually beats better algorithms” , and pointed out that sampling is often less-than-optimal, stating that “it’s often better to use really simple algorithms to analyze really large datasets, rather than complex algorithms that can only work with smaller datasets.”

The bottom line is that predictive models are more accurate when they utilize a complete data set, because this approach completely avoids the risk of sampling error or bias.

Importantly, sampling is often being used to overcome the performance limitations of legacy technologies that were simply not designed to address the challenges of terabyte-scale data analysis.  Thankfully, that world has changed – technology has evolved – and for an increasingly common set of problems, sampling is no longer required (nor is it the optimal solution).  This is exciting because it opens up opportunities to solve challenging problems in ways previously not possible.

And clearly, the need to sample data is reduced as query and data load performance increase. In other words, performance matters.

Photo credit:  Paul Joseph

TAGGED:predictive modelssampling
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Careful with the S-word

5 Min Read

The Trouble with Big Data

6 Min Read

Some thoughts on advanced analytics in 2010

5 Min Read

Scoring data in ADAPA via web services using SQL Server Integration Services (SSIS)

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?