Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Careful with the S-word
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Careful with the S-word
Predictive Analytics

Careful with the S-word

DavidMSmith
DavidMSmith
5 Min Read
SHARE

Market researcher Tom Ewing offers some advice that applies equally well to statisticians — be careful when you use the word “significant” in its technical sense. Depending on the audience, it could lead to misunderstandings:

Non-researchers tend to misread “significant” as “important” or simply “big”. Which isn’t the case – it can be trivial or small, it’s just unlikely to be fluke or coincidence.

Researchers tend to read “significant” as “interesting”. Which isn’t the case either – even big results can be utterly banal, especially if they simply confirm something you could have guessed, or if they repeat information you already have.

It’s good advice in general, but with regard to the latter point we are given the following example:

Suppose we give 1,000 people an IQ test, and we ask if there is a significant difference between male and female scores. The mean score for males is 98 and the mean score for females is 100. We use an independent groups t-test and find that the difference is significant at the .001 level. The big question is, “So what?”. The difference between 98 and 100 on an IQ test is a very small difference… so small, in fact, that its not even important.

Then…

Market researcher Tom Ewing offers some advice that applies equally well to statisticians — be careful when you use the word “significant” in its technical sense. Depending on the audience, it could lead to misunderstandings:

More Read

Data Mining Combined With Predictive Modeling Equal 3D Data Visualization
Development of on-chip optical interconnects for future…
Using Predictive Analytics to Fight Crime
What is Cloud Computing, Anyway? Cloud computing is the kind of…
Face Tracking an avatar! (via KevinAires)

Non-researchers tend to misread “significant” as “important” or simply “big”. Which isn’t the case – it can be trivial or small, it’s just unlikely to be fluke or coincidence.

Researchers tend to read “significant” as “interesting”. Which isn’t the case either – even big results can be utterly banal, especially if they simply confirm something you could have guessed, or if they repeat information you already have.

It’s good advice in general, but with regard to the latter point we are given the following example:

Suppose we give 1,000 people an IQ test, and we ask if there is a significant difference between male and female scores. The mean score for males is 98 and the mean score for females is 100. We use an independent groups t-test and find that the difference is significant at the .001 level. The big question is, “So what?”. The difference between 98 and 100 on an IQ test is a very small difference… so small, in fact, that its not even important.

Then why did the t-statistic come out significant? Because there was a large sample size. When you have a large sample size, very small differences will be detected as significant. This means that you are very sure that the difference is real (i.e., it didn’t happen by fluke). It doesn’t mean that the difference is large or important. If we had only given the IQ test to 25 people instead of 1,000, the two-point difference between males and females would not have been significant.

Personally, I’m not so sure I’d dismiss that significant 2-point difference so lightly. 2 points may not be a meaningful difference in terms of IQ tests, but I’m immediately led to wonder why a significant difference was observed at all. Was there a problem with the sampling, that led to the men and women in the test being different in some way? Was there some kind of problem with the test, that favored women over men? If you get a significant result you don’t expect, it’s well worth investigating why — you may find a surprising, and dare I say, significant, problem with the way the experiment was conducted.

Blackbeard Blog: The Significance Problem (via @russhmeyer)

TAGGED:sampling
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Trouble with Big Data

6 Min Read

Why Data Sampling Leads to Bad Decisions

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?