Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 3 Effortless Tactics to Be a Data Science Success in Business
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > 3 Effortless Tactics to Be a Data Science Success in Business
Modeling

3 Effortless Tactics to Be a Data Science Success in Business

Damian Mingle
Damian Mingle
7 Min Read
SHARE

 

Contents
  • Producing a Data Science Project Plan 
  • Project Plan in Action 
  • Summary 

“Move out of the way – I am ready to model.”

 

“Move out of the way – I am ready to model.”

More Read

Analytics BS: 3 Questions to Spot It
From Master Data to Master Graph
Minding the KPI Gap – A Critical Part of the EPM Process
Keeping Singapore Green with Data and Design
Data Visualization’s Final Frontier

That is the typical sentiment of a Data Science team when given a business problem. However, in the context of a dynamic business, things are not that simple; instead, business needs require that the Data Science team be detailed in the communication of their process. The last thing a Data Science team wants to do is produce a project plan they feel is a pedestrian artifact aimed to pacify their business counterparts. They tend to prefer a more fluid and creative style as opposed to one that is stiff and inflexible. Data Scientists may be tempted to promote the idea that they cannot let anything get in the way of creativity and brilliance or it will be to the detriment of the business. However, in many cases, Data Scientists may be allowing their human fear of transparency and accountability to dictate how they approach what the business needs – maximum visibility. Don’t fall into the trap of believing that these templated documents merely exist to check the proverbial box in order to placate the MBAs and Project Managers in the room. Data Science teams designed for success will most certainly deliver a Data Science project plan and use it throughout their analytics project. 

Producing a Data Science Project Plan 

 

You might ask what the intended purpose behind such a fancy business document really is at its core. The Data Science project plan is incredibly straightforward: its sole purpose is to be the battle plan for achieving the Data Science goals which in turn achieve the business goals. Successful Data Science teams will know that there is immense value in not only being able to achieve the Data Science goals, but in being able to relate them back to the business on a constant basis. It’s the burden of the Data Scientist to be sure that clear communication exists between the two groups. The challenge for a Data Scientist is translating Data Science into business terms. This is the kind of thing that is built through experience and through learning what the business expects in a traditional project plan. If a business had a choice between a model with higher predictive accuracy by a Data Scientist without a project plan and a model with lower predictive accuracy by a Data Scientist with a project plan, they most certainly would choose to work with a Data Scientist who could communicate in terms of business, translate Data Science ideas, and understand the power of leveraging other individuals in the organization to contribute to the overall outcome. 

Project Plan in Action 

 

The nuts and bolts of a Data Science project plan will be different for each team and each organization, but there are core elements you will see in almost all effective Data Science project plans – sort of a Tao of Data Science Project Plans. 

Three Effortless Tactics: 

  1. List the stages in the project 

 The business should not have to make assumptions about the stages you may take them through as a Data Scientist. Display your expectation to everyone and let them know how much time each stage may take. Also, do the obvious things like listing the resources required as well as the types of inputs and outputs your team expects. Lastly, list dependencies. After all, you will want your counterparts to be aware that you cannot move forward until “x” event happens; for example, the Data Scientist may be waiting to receive a data feed from IT. This is precisely the kind of thing to call out in the Data Science project plan. 

2. Define the large iterations in the project 

 Most business users will not be intimately involved in how a Data Science team works or why it may change when you encounter a classification problem versus a regression problem. So in an effort to be clear and meaningful, share stages that are more iterative as well as their corresponding durations – such as modeling or the evaluation stages. The best Data Scientists know how to  appropriately manage expectations from the business through communication with the broader organization.  

3. Point out scheduling and risks  

Virtually all working individuals know that it’s unrealistic to think everything happens only in ideal scenarios. Data Scientists should take the necessary time to consider scheduling resources and the inherent risk they could encounter in the project. Give the business the comfort that only a trusted advisor can provide them. Think through what could happen and what you would recommend to them if they encounter turbulence – because turbulence is inevitable. Taking this extra step is the hallmark of a Data Science professional. 

Summary 

Do not view the Data Science project plan as training wheels for a junior Data Scientist who is new to working with business, but rather what a skilled Data Scientist will review each time his or her team begins a new task within the Data Science project. Crafting a Data Science project plan to pacify the business – and never utilizing it for team guidance – is a grave mistake that one day could end in ruin for the Data Science team, the business, or both. An effective Data Scientist will work from the perspective that a goal without a plan is simply a wish and nothing more. Or, said differently, an effective Data Science team works a plan at all times. 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

A Call for Change: 6 Indicators You Need a New Approach to Budgeting

4 Min Read

Three Ways to Get Your Predictive Models Deployed

10 Min Read

Big Data: It’s About the Data, Not About the Big

5 Min Read

First Look – IBM In-Database Analytics

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?