Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data Quality: What’s Old is New Again
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Big Data Quality: What’s Old is New Again
Big Data

Big Data Quality: What’s Old is New Again

Gayle Nixon
Gayle Nixon
3 Min Read
SHARE

Skinny-tieEverything old is new again. It’s an expression commonly used to describe those popular fashion trends – from pleated pants to skinny ties – that pop up every few decades. The colors, materials and supporting accessories may change, but at the foundation are classic clothing items that reappear time and time again.

The concept isn’t exclusive to clothes, however. Right now the market is abuzz about Big Data and the new information and technologies it brings to businesses. Concurrently, timeless principles of data quality and data governance are experiencing a resurgence in popularity, just as they have at the outsets of past data management initiatives related to data warehousing, customer data integration and master data management. Organizations realize that to successfully leverage the full potential of new Big Data innovations, they need to draw from traditional concepts of data quality and governance – here’s why.

So many new applications and platforms offer sophisticated ways to analyze and manipulate Big Data, but they lack capabilities to adequately standardize, enrich and match complex data sets. As a result, organizations realize that they first have to ensure the reliability and quality of data lakes and enterprise data hubs before their contents can be utilized by any downstream applications. According to a recent TDWI report on best practices for Hadoop, 55% of organizations surveyed plan to invest in data quality tools for Hadoop over the next three years – a higher expected rate of investment than for analytics, reporting and data visualization tools. Organizations acknowledge the potential return on Big Data investments is large, but it ultimately pays to get the data right, first.

Additionally, organizations can only align Big Data to business initiatives if they have complete visibility into the full scope of their business information. And more often than not, organizations are integrating unfamiliar, third-party data sets into their existing data stores. Traditional principles of data profiling and data exploration are more critical than ever as all of this new information floods organizations every day. Data quality solutions not only provide the visibility that organizations require; they identify connections between vast old and new data sets as they are integrated together.

Finally, the key challenges facing organizations tackling Big Data are similar to those that arise around any major shift in information management – how to make the right investments and tie those investments to specific business goals that yield the greatest return possible. Multi-functional, collaborative governance strategies can ensure Big Data investments truly align to business needs.

by Denise Laforgia, Product Marketing Manager, Trillium Software

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive
microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Slides from OSCON

4 Min Read

Stat Models, Astronomical Mysteries…and Business Data

4 Min Read
privacy concerns over web based applications
Big DataExclusiveITPolicy and GovernancePrivacySecurity

Privacy Concerns Could Hinder Personalization of Web Based Applications

5 Min Read

2010 Marketing Trends Study Releases

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?