Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Beware of Big Data Technology Zealotry
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Beware of Big Data Technology Zealotry
AnalyticsBest PracticesBig DataCommentaryCulture/LeadershipData VisualizationData WarehousingExclusiveHadoopHardwareOpen SourcePredictive AnalyticsRisk Management

Beware of Big Data Technology Zealotry

paulbarsch
paulbarsch
5 Min Read
Image
SHARE

Image

Image

Undoubtedly you’ve heard it all before: “Hadoop is the next big thing, why waste your time with a relational database?” or “Hadoop is really only good for the following things” or “Our NoSQL database scales, other solutions don’t.” Invariably, there are hundreds of additional arguments proffered by big data vendors and technology zealots inhabiting organizations just like yours. However, there are few crisp binary choices in technology decision making, especially in today’s heterogeneous big data environments.

Teradata CTO Stephen Brobst* has a great story regarding a Stanford technology conference he attended. Apparently in one session there were “shouting matches” between relational database and Hadoop fanatics as to which technology better served customers going forward. Mr. Brobst wasn’t amused, concluding; “As an engineer, my view is that when you see this kind of religious zealotry on either side, both sides are wrong. A good engineer is happy to use good ideas wherever they come from.”

More Read

Image
Adopting a Sucessful BOYD Implementation Strategy
Application Development Consulting Helps Companies Get the Most of AI
Government’s Big Data Affected by Shutdown
March 2012 Early Indications I: Financial oddities of tech companies
Why AI Technology For YouTube Marketers Is Viewed As A Godsend

Considering various technology choices for your particular organization is a multi-faceted decision making process. For example, suppose you are investigating a new application and/or database for a mission critical job. Let’s also suppose your existing solution is working “good enough”. However, the industry pundits, bloggers and analysts are hyping and luring you towards the next big thing in technology. At this point, alarm bells should be ringing. Let’s explore why.

First, for companies that are not start-ups, the idea of ripping and replacing an existing and working solution should give every CIO and CTO pause. The use cases enabled by this new technology must significantly stand out.

Second, unless your existing solution is fully depreciated (for on-premises, hardware based solutions), you’re going to have a tough time getting past your CFO. Regardless of your situation, you’ll need compelling calculations for TCO, IRR and ROI.

Third, you will need to investigate whether your company has the skill sets to develop and operate this new environment, or whether they are readily available from outside vendors.

Fourth, consider your risk tolerance or appetite for failure—as in, if this new IT project fails—will it be considered a “drop in the bucket” or could it take down the entire company?

Finally, consider whether you’re succumbing to technology zealotry pitched by your favorite vendor or internal technologist. Oftentimes in technology decision making, the better choice is “and”, not “either”.  

For example, more companies are adopting a heterogeneous technology environment for unified information where multiple technologies and approaches work together in unison to meet various needs for reporting, dashboards, visualization, ad-hoc queries, operational applications, predictive analytics, and more. In essence, think more about synergies and inter-operability, not isolated technologies and processes.

In counterpoint, some will argue that technology capabilities increasingly overlap, and with a heterogeneous approach companies might be paying for some features twice. It is true that lines are blurring regarding technology capabilities as some of today’s relational databases can accept and process JSON (previously the purview of NoSQL databases), queries and BI reports can run on Hadoop, and “discovery work” can complete on multiple platforms. However, considering the maturity and design of various competing big data solutions, it does not appear—for the immediate future—that one size will fit all.

When it comes to selecting big data technologies, objectivity and flexibility are paramount. You’ll have to settle on technologies based on your unique business and use cases, risk tolerance, financial situation, analytic readiness and more.  

If your big data vendor or favorite company technologist is missing a toolbox or multi-faceted perspective and instead seems to employ a “to a hammer, everything looks like a nail” approach, you might want to look elsewhere for a competing point of view.

*Full disclosure: the author of this column is employed by Teradata Corporation.

TAGGED:risky business
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsBig DataExclusive

The Center of Analytics Success Takes on Communication Skills

4 Min Read
Image
AnalyticsBig DataCommentaryData VisualizationData WarehousingExclusiveModelingPredictive AnalyticsRisk Management

Science Needs to Be Less Certain

5 Min Read
Image
AnalyticsBig DataCloud ComputingCommentaryCulture/LeadershipData WarehousingExclusive

Storytelling with the Sounds of Big Data

5 Min Read
Image
Cloud ComputingCommentaryExclusive

Debunking Five Cloud Computing Myths

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?