Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The 4 Biggest Problems with Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > The 4 Biggest Problems with Big Data
AnalyticsData MiningData QualityRisk ManagementSecurityUnstructured Data

The 4 Biggest Problems with Big Data

Brett Stupakevich
Brett Stupakevich
4 Min Read
SHARE

data illustration computing cover 370x229 150x150 photo (predictive analytics data scientist 2 data analytics big data )People are buzzing about the promise of big data. That’s because 

data illustration computing cover 370x229 150x150 photo (predictive analytics data scientist 2 data analytics big data )People are buzzing about the promise of big data. That’s because it enables companies to obtain meaningful insights into customer behaviors, attitudes and preferences from their comments in social channels as well as through the other vast amounts of data that are generated through customer transactions and channel interactions.

Still, the amount of data and inputs that companies can draw upon is mind-boggling. And many business leaders need help determining which data sets to draw upon to address and, in some cases, identify pressing business issues that need resolution (e.g. customer churn, market share loss, etc.).

Indeed, analytics can help make sense of big data, in part, by helping companies identify the types of data and data sets that they should be examining to address specific business challenges. Still, there are significant challenges companies must overcome in order to exploit big data. Here are four of the most prominent:

More Read

big data use in video production
Big Data Holds the Key to Television and Online Video Production
You’ve Made Your ERP an Island – Now What? – Perhaps You Should Consider a PET
Big Data Fights Crime: The FBI’s Next Generation Identification
Data Obesity
Report: Social network data theft a leading cybersecurity concern in 2017
  1. A comprehensive approach to using big data. Most companies collect gobs of data but they don’t have comprehensive approaches for centralizing the information. According to a recent survey by LogLogic, 59% of the more than 200 security officers who responded say they are either using disparate systems for gathering data, not managing log data, or they use antiquated spreadsheets. The right analytics tools can definitely help to streamline and make sense of all this data, but a well-conceived strategy for collating data sources from different silos is still necessary.
  2. Getting the right information into the hands of decision makers. Companies should use analytics “to avoid getting buried under the humongous amount of information they generate through various outlets,” according to a recent ZDNet Asia interview with XMG analyst Jacky Garrido. It’s true – too many companies lack coherent approaches to utilizing the gushers of customer and business data that are flowing into their organizations. As Garrido notes, as data is gathered, it needs to be mapped out. Moreover, critical data needs to be separated from insignificant or unnecessary data (e.g. inconsequential comments made by customers on Facebook or Twitter).
  3. Effective ways of turning “big data” into “big insights.” No matter how you slice it, data is just that – data. In and of itself, data doesn’t necessarily provide decision makers with the kind of insights they need to do their jobs effectively or to take the next best actions based on discoveries about customer trends or other revelations about market conditions. This is where the right analytics tools are needed to help data scientists and business leaders make sense of the volumes of data that are pouring into their organizations. This includes the use of data visualization tools that can be used to help put data into context.
  4. Big data skills are in short supply. There’s already a shortage of data scientists in the market. This includes a scarcity of people who know how to work well with large volumes of data and big data sets. Companies need the right mix of people to help make sense of the data streams that are coming into their organizations. This includes skills for applying predictive analytics to big data, a skill set that even most data scientists lack.

Next Steps:

  • Sign up for our April 5 complimentary webcast: Make Better Decisions with Predictive Analytics in Spotfire with Lou Bajuk-Yorgan (@LouBajuk), Tibco’s Sr. Director, Product Management.
  • Download our complimentary 5-Minute Guide to Business Analytics and learn how analytics technologies can help you uncover the most relevant data when you need it.

TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How to Use Big Data to Cash in on the Firearms Market
Exclusive

How to Use Big Data to Cash in on the Firearms Market

6 Min Read
Young woman near digital screen in street at evening time
Artificial IntelligenceBig DataExclusive

Big Fashion Meets Big Data: How Fashion Industry Is Benefiting From Big Data

6 Min Read
Image
Big DataData QualityData WarehousingUnstructured Data

What Are Accumulators? A Must-Know for Apache Spark

6 Min Read
big data cloud computing are future of robotics
Big DataCloud ComputingComputingExclusiveIT

Merging Big Data and Cloud Computing is the Future of Robotics

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?