Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Reinventing the BI Solution You Already Have – A Series of Unfortunate Data Warehousing/Business Intelligence Events #1
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Reinventing the BI Solution You Already Have – A Series of Unfortunate Data Warehousing/Business Intelligence Events #1
Business IntelligenceData Warehousing

Reinventing the BI Solution You Already Have – A Series of Unfortunate Data Warehousing/Business Intelligence Events #1

RickSherman
RickSherman
5 Min Read
SHARE

(This is part of our ongoing Series of Unfortunate Data Warehousing and Business Intelligence Events. Click for the complete series, so far.)

Series_unfortunate A fundamental flaw of many business intelligence solutions is recreating what the company is already using for reporting and analysis. This takes one of two paths:

1)    The data warehouse is built using essentially the source systems’ data model. It may be “cleaned up” with new names and use only a subset of the source data, but it is really just a retread of what you already have.

It does shift your reporting from the source systems to a DW, but you have not taken advantage of the advanced dimensional modeling techniques that have grown to provide superior analytic performance. An entity-relationship (ER) model or third normal form (3NF) is indeed best practice for transactional systems, but not for business intelligence or data integration. IT knows 3NF and hence figures that is what they should do; many experienced practitioners starting off using 3NF and they continue to do so.

More Read

DIALOG Sodexo – Workforce Management
Does jargon sell tech products or not?
Forecasting Olympic Medals
Data-Driven eCommerce Case Study: Cohorts and Segmentation
How Coca-Cola Takes a Refreshing Approach to Big Data

The cost is longer development times and more labor-intensive maintenance. It also performs slower than best practice design, so …


(This is part of our ongoing Series of Unfortunate Data Warehousing and Business Intelligence Events. Click for the complete series, so far.)

Series_unfortunate A fundamental flaw of many business intelligence solutions is recreating what the company is already using for reporting and analysis. This takes one of two paths:

1)    The data warehouse is built using essentially the source systems’ data model. It may be “cleaned up” with new names and use only a subset of the source data, but it is really just a retread of what you already have.

It does shift your reporting from the source systems to a DW, but you have not taken advantage of the advanced dimensional modeling techniques that have grown to provide superior analytic performance. An entity-relationship (ER) model or third normal form (3NF) is indeed best practice for transactional systems, but not for business intelligence or data integration. IT knows 3NF and hence figures that is what they should do; many experienced practitioners starting off using 3NF and they continue to do so.

The cost is longer development times and more labor-intensive maintenance. It also performs slower than best practice design, so many companies compensate by buying more infrastructure such as CPUs, memory, storage and network bandwidth. If you sell or resell hardware then using this design is fine, but for the consumers of BI solutions you should try another way.

2)    The other end of the spectrum from 3NF is recreating your current reporting solutions, often data shadow systems or spreadmarts, that basically flatten out the data. It is easy to see why people recreate the spreadsheets the business people are using for reporting, but it leads to inflexible reports that require more and more reports to be built every time the business changes or expands their reporting requirements.

The fundamental concept behind dimensional modeling and OLAP (online analytical processing) design was to provide business people with the flexibility in their reporting and analysis. This is how a company can enable business self-service reporting rather than have a large group of BI developers designing, building and maintaining dozens or hundreds of custom reports.

Just as with 3NF the “flat world” approach to data mart design results in a much higher TCO and the huge queue of report development one sees at many BI implementations. Most assume that queue and costs come with the territory, but it does not have to be that way.

I will follow up with more unfortunate events I have observed. Feel free to e-mail with the unfortunate events you have seen.
Link to original post

TAGGED:business intelligencedata warehousing
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

business intelligence for exhibitions
Business Intelligence

Business Intelligence for Fairs, Congresses and Exhibitions

8 Min Read
business intelligence benefits for companies trying to get through the pandemic
Analytics

Use a Data Strategy to Make Your Startup Profitable

7 Min Read

Stuck in First Gear

5 Min Read

Ease-of-use Key to Successful Business Intelligence Deployments

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?