By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Why Can’t We Just Use Prediction Markets?
Share
Notification Show More
Latest News
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence
How Big Data Is Transforming the Maritime Industry
How Big Data Is Transforming the Maritime Industry
Big Data
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Why Can’t We Just Use Prediction Markets?
Predictive Analytics

Why Can’t We Just Use Prediction Markets?

Daniel Tunkelang
Last updated: 2010/06/09 at 12:29 PM
Daniel Tunkelang
6 Min Read
SHARE

Prediction markets were all the rage a few years ago, two of the most notable being the Iowa Electronic Market forecasting electoral results and the now defunct Tradesports offering a similar platform for betting on sports events. There was even a proposal to have the US government run a prediction market for terrorist attacks.

In a prediction market, any event with a quantifiable (e.g., binary) outcome can be converted into an asset. At any given time, the asset value corresponds to the market prediction of the probability of the outcome. Just as in any security market, participants determine the value through their buying and selling actions. In principle, this framework allows any event with a quantifiable outcome to be predicted by a marketplace.

But, at least from my vantage point, prediction markets have not had a broad impact on decision making, despite all of the “anys” in the previous paragraph. Outside of political forecasting and sports gambling (and of course finance itself), I’m not aware of any groups outside of academia that invest significantly in the use of  prediction markets. Sure, there’s the Hollywood Stock Exchange that applies the fantasy sports …

More Read

data-driven approach in healthcare

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

Automotive Industry Uses Analytics To Solve Pressing Supply Chain Issues
How can CIOs Build Business Value with Business Analytics?
Seven Benefits of Using AI to Perform Text Analysis
7 Data Lineage Tool Tips For Preventing Human Error in Data Processing

Prediction markets were all the rage a few years ago, two of the most notable being the Iowa Electronic Market forecasting electoral results and the now defunct Tradesports offering a similar platform for betting on sports events. There was even a proposal to have the US government run a prediction market for terrorist attacks.

In a prediction market, any event with a quantifiable (e.g., binary) outcome can be converted into an asset. At any given time, the asset value corresponds to the market prediction of the probability of the outcome. Just as in any security market, participants determine the value through their buying and selling actions. In principle, this framework allows any event with a quantifiable outcome to be predicted by a marketplace.

But, at least from my vantage point, prediction markets have not had a broad impact on decision making, despite all of the “anys” in the previous paragraph. Outside of political forecasting and sports gambling (and of course finance itself), I’m not aware of any groups outside of academia that invest significantly in the use of  prediction markets. Sure, there’s the Hollywood Stock Exchange that applies the fantasy sports concept to the movie industry and even startup Empire Avenue that aspires to generalize this idea even further into an “online influence stock exchange”. Still, I think it’s safe to say that prediction markets have had limited traction to date.

Many people do, however, believe that we can harness the wisdom of crowds. In particular, we as consumers rely on reviews and recommendations to inform our decisions about what to buy, read, etc. Because those decisions have financial implications for sellers, the world of online reviews has an adversarial element, where review systems face manipulation by those who would shill their own products or services. As a result, it is never clear how much we as consumers should trust the reviews we read to be sincere, let alone useful.

Which brings me back to prediction markets. Unlike most venues for soliciting collective opinion, prediction markets offer a strong incentive for accuracy. Betting on whether readers will like a book is quite different than simply offering a review that asserts an opinion without any risk to the person making the assertion. It is possible to manipulate a prediction market (e.g., by flooding it with high bets), but research suggests that such manipulations are short-lived and in fact expose the manipulator to significant financial risk when the price re-stabilizes.

So why don’t we use prediction markets instead of relying on reviews and recommendations? Perhaps we should, and it’s just a matter of time until entrepreneurs build successful businesses around this idea. But I suspect that much of the value of user-generated content today comes from contributors not thinking in market terms. While using prediction markets could solve the problem of shill reviews, it might also scare off the altruists.

Still, it seems to me that we should look for more opportunities to incent accuracy. Even altruistic reviewers have an interest in establishing their credibility, at least if that credibility determines the propagation of they opinions they share (perhaps I’m conflating altruism with egotism). The challenge may be to implement a marketplace that deals in the social currency of reputation than the hard currency of cash–while avoiding the sort of virtual currency that many people see as meaningless.

Can we obtain the benefits of market dynamics and still take advantage of the less rational motivations that drive some of the best online reviews today? I hope there are people who feel incented to work on this problem!

Link to original post

TAGGED: analytics, Decision Making, probability
Daniel Tunkelang June 9, 2010
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
ai for small business tax planning
Maximize Tax Deductions as a Business Owner with AI
Artificial Intelligence
ai in marketing with 3D rendering
Marketers Use AI to Take Advantage of 3D Rendering
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read
supply chain analytics
Analytics

Automotive Industry Uses Analytics To Solve Pressing Supply Chain Issues

6 Min Read
Analytics

How can CIOs Build Business Value with Business Analytics?

8 Min Read
text analytics
Text Analytics

Seven Benefits of Using AI to Perform Text Analysis

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?