Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics: 8 Things to Keep in Mind (Part 7)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predictive Analytics: 8 Things to Keep in Mind (Part 7)
Business IntelligenceData MiningPredictive Analytics

Predictive Analytics: 8 Things to Keep in Mind (Part 7)

Editor SDC
Editor SDC
6 Min Read
SHARE

Theme 7: Prototype, Pilot, Scale

Edison did not invent the light bulb. He took a working concept and developed hundreds of prototypes rapidly, tested them and along the way figured out improvements that were required to scale his invention for commercial use. Julian Trubin writes about the prototyping process:

In 1879 Edison obtained an improved Sprengel vacuum pump, and it proved to be the catalyst for a breakthrough. Edison discovered that a carbon filament in an oxygen-free bulb glowed for 40 hours. Soon, by changing the shape of the filament to a horseshoe it burned for over 100 hours and later, by additional improvements, it lasted for 1500 hours.

Edison’s primary contribution to the development of light bulb was that he carried the idea from laboratory to commercialization, taking into consideration not only technical problems, but also issues like economics and the manufacturing of bulbs.

More Read

Is Amazon really that cool as we keep saying?
EmSense, a “neuromarketing” company founded in 2004 by seven…
Has the Twitter Trend Reached its Apex – Even Among Marketers?
Is Your Dashboard Working?
Democratizing Data with Decision Management

We took a leaf from Edison’s book when we developed, our prototype, pilot and scale approach to deploy analytics solutions for clients.

In our experience rapid prototyping is essential to show the value of the initiative to senior executives.  One of our health care clients …

Theme 7: Prototype, Pilot, Scale

Edison did not invent the light bulb. He took a working concept and developed hundreds of prototypes rapidly, tested them and along the way figured out improvements that were required to scale his invention for commercial use. Julian Trubin writes about the prototyping process:

In 1879 Edison obtained an improved Sprengel vacuum pump, and it proved to be the catalyst for a breakthrough. Edison discovered that a carbon filament in an oxygen-free bulb glowed for 40 hours. Soon, by changing the shape of the filament to a horseshoe it burned for over 100 hours and later, by additional improvements, it lasted for 1500 hours.

Edison’s primary contribution to the development of light bulb was that he carried the idea from laboratory to commercialization, taking into consideration not only technical problems, but also issues like economics and the manufacturing of bulbs.

We took a leaf from Edison’s book when we developed, our prototype, pilot and scale approach to deploy analytics solutions for clients.

In our experience rapid prototyping is essential to show the value of the initiative to senior executives.  One of our health care clients wanted help in institutionalizing data driven culture within its sales organization especially in identifying and focusing sales effort on high potential customers. At first, we developed a prototype predictive scoring model to identify the high potential customers. Mapping the results of the model to existing effort demonstrated that greater than 50% sales force time was used ineffectively and the client was leaving a lot of dollars on the table.

However, for organizations to see bottom line benefit, adoption of predictive analytics based solution is key. Piloting helps refine the prototype and plan for potential adoption pitfalls amongst the end users.  At our healthcare client, we knew that there were skeptics amongst the sales people who do not trust the model and there were change management blind spots which we wanted to discover prior to the national roll out. We designed a pilot with the following objectives:

  1. Prove the validity of the predictive model
  2. Create evangelists from the sales team of the pilot regions
  3. Identify the big data gaps and establish a process of continually refining CRM data
  4. Establish and refine the key performance metrics to report to senior management
  5. Understand the key questions and concerns of the sales team in adopting the system

We collected a lot of rich quantitative and qualitative data during the pilot phase, which conclusively proved the value of the predictive model but also provided us with insights to incorporate into the roll out process.  For instance we learned that in a few instances customer address data was not getting updated  in the data warehouse and that sales managers wanted to understand the factors that went into calculating the predictive score of customer before they felt comfortable using it.

Scaling the pilot requires cross organization coordination and strong program management to ensure that the pilot learnings are incorporated in the roll out, there is a positive word of mouth buzz for the solution and there is minimal impact to day-to-day business. The inputs from pilot helped us better design the compensation rules and reporting metrics, which helped us roll out the system which head the trust of the sales force.

Our client saw significant uplift in revenue in the first 3 months of rollout. The sales organization started realizing the value of data driven approach and hired a team to support other sales analytics initiatives.

Are there other tips and tricks which you have successfully used to deploy predictive analytics solutions?

Link to original post

TAGGED:analyticsbusiness intelligencedata mining
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Digital data explosion highlights need for new-age Database and Business Intelligence technologies

6 Min Read
medicaid data mining
ExclusiveNews

10 Ways Medicaid Recipients Can Benefit from Data Mining

8 Min Read

Big Data, Unstructured Information Analysis is More Than Sentiment.

4 Min Read

How to Improve Predictive Accuracy? (Part 1)

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?