By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
    predictive analytics for amazon pricing
    Using Predictive Analytics to Get the Best Deals on Amazon
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Conditional probability: an easier way
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Conditional probability: an easier way
Predictive Analytics

Conditional probability: an easier way

DavidMSmith
Last updated: 2010/04/27 at 5:38 PM
DavidMSmith
5 Min Read
SHARE

Conditional probabilities are bane of many students of Statistics, but statements of conditional probability come up surprisingly often in real life. For example, as Steven Strogatz writes in the New York Times, when doctors are asked to estimate the probability that a woman has breast cancer given a positive mammogram test result, most get the answer wildly wrong despite being given the population frequency of breast cancer and the conditional probability of false positives from a mammogram test. Here’s one doctor’s experience trying to come up with a number:

“[He] was visibly nervous while trying to figure out what he would tell the woman.  After mulling the numbers over, he finally estimated the woman’s probability of having breast cancer, given that she has a positive mammogram, to be 90 percent.  Nervously, he added, ‘Oh, what nonsense.  I can’t do this.  You should test my daughter; she is studying medicine.’  He knew that his estimate was wrong, but he did not know how to reason better.  Despite the fact that he had spent 10 minutes wringing his mind for an answer, he could not figure out how to draw a sound inference from the probabilities. …

More Read

data science use advertising

The Low-Down On Using Data Science And Statistics In Advertising

Big Data Analytics: The Four Pillars
4 Retail BI Lessons to Learn from Google’s Nexus Fail
Data Visualizations: The Tip of the Iceberg of Understanding
The First Data Scientist on the Evolution of Data Science

Conditional probabilities are bane of many students of Statistics, but statements of conditional probability come up surprisingly often in real life. For example, as Steven Strogatz writes in the New York Times, when doctors are asked to estimate the probability that a woman has breast cancer given a positive mammogram test result, most get the answer wildly wrong despite being given the population frequency of breast cancer and the conditional probability of false positives from a mammogram test. Here’s one doctor’s experience trying to come up with a number:

“[He] was visibly nervous while trying to figure out what he would tell the woman.  After mulling the numbers over, he finally estimated the woman’s probability of having breast cancer, given that she has a positive mammogram, to be 90 percent.  Nervously, he added, ‘Oh, what nonsense.  I can’t do this.  You should test my daughter; she is studying medicine.’  He knew that his estimate was wrong, but he did not know how to reason better.  Despite the fact that he had spent 10 minutes wringing his mind for an answer, he could not figure out how to draw a sound inference from the probabilities.” [The correct answer is 9 percent.]

Most students (and doctors!) are taught to use Bayes’ Theorem to calculate marginal probabilities from conditional probabilities, but as Strogatz point out this isn’t exactly an intuitive calculation, with the dividing of probabilities by probabilities and all. He suggests a more intuitive (but slightly less accurate) method is to think instead about frequencies within concrete groups and sub-groups. For the mammogram test, the calculation becomes:

Eight out of every 1,000 women have breast cancer.  Of these 8 women with breast cancer, 7 will have a positive mammogram.  Of the remaining 992 women who don’t have breast cancer, some 70 will still have a positive mammogram.  Imagine a sample of women who have positive mammograms in screening. How many of these women actually have breast cancer?

Since a total of 7 + 70 = 77 women have positive mammograms, and only 7 of them truly have breast cancer, the probability of having breast cancer given a positive mammogram is 7 out of 77, which is 1 in 11, or about 9 percent.

This method is frowned upon by textbooks, because it’s not as accurate (in the example above, rounding to whole numbers of women in the groups), and because it implicitly assumes that the frequency of the event (here, breast cancer) is determined solely by the probability, with no accounting for variation. But it is an intuitive method for understanding conditional probability, that seems more likely (ha!) to come up with an reasonably accurate answer for many people.

Read the rest of Strogatz’s article for other examples of intuitive conditional probability calculations, including a great example from the OJ Simpson trial.

New York Times Opinionator: Chances Are

Link to original post

TAGGED: statistics
DavidMSmith April 27, 2010
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance
analyst,women,looking,at,kpi,data,on,computer,screen
What to Know Before Recruiting an Analyst to Handle Company Data
Analytics
data perspective
Tackling Bias in AI Translation: A Data Perspective
Big Data
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best Practices Big Data Data Collection Data Management Privacy

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data science use advertising
Big DataMarketing

The Low-Down On Using Data Science And Statistics In Advertising

6 Min Read

Big Data Analytics: The Four Pillars

9 Min Read
google nexus BI lesson
Uncategorized

4 Retail BI Lessons to Learn from Google’s Nexus Fail

5 Min Read

Data Visualizations: The Tip of the Iceberg of Understanding

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?