Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Risk by risk – a decision-centric approach to risk management
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Risk by risk – a decision-centric approach to risk management
Business IntelligenceData MiningExclusivePredictive Analytics

Risk by risk – a decision-centric approach to risk management

JamesTaylor
JamesTaylor
4 Min Read
SHARE

 

Risk management is an important topic for many organizations, especially those in financial services. Most of these organizations acquire risk one customer, one transaction at a time – this customer is not going to be able to pay (risk), this transaction is fraudulent (risk), this deal will not make money in the prevailing economic circumstances (risk). Many of these same organizations, however, have a portfolio focus in their risk management program – they use BI and reporting tools to summarize and assess their overall risk profile. They consider their total risk and invest their analytic dollars at this level. This is a mistake.

By considering risk only after the fact, these companies are substituting risk reporting for risk management. They are using analytics not to prevent risk or to make effective trade-offs, but to see how much risk they have acquired and what the consequences might be. By considering only their overall or total risk they are obscuring the impact of individual transactions – individual decisions…

More Read

Advanced analytics, particularly predictive and statistical…
The Role of Business Intelligence in The Modern Commercial Organization
14 Brands Using Mobile Apps Instead of Ads to Build Customer Loyalty
Adding Business to Analytics
Proctor & Gamble – A Case Study in Business Analytics

 

Risk management is an important topic for many organizations, especially those in financial services. Most of these organizations acquire risk one customer, one transaction at a time – this customer is not going to be able to pay (risk), this transaction is fraudulent (risk), this deal will not make money in the prevailing economic circumstances (risk). Many of these same organizations, however, have a portfolio focus in their risk management program – they use BI and reporting tools to summarize and assess their overall risk profile. They consider their total risk and invest their analytic dollars at this level. This is a mistake.

By considering risk only after the fact, these companies are substituting risk reporting for risk management. They are using analytics not to prevent risk or to make effective trade-offs, but to see how much risk they have acquired and what the consequences might be. By considering only their overall or total risk they are obscuring the impact of individual transactions – individual decisions – on their overall risk profile.

Instead companies need to identify all the decisions involved in their business that contribute to risks. When I work with clients I call this Decision Discovery and focus on the high-volume, transactional decisions that drive day-to-day operations. Many of these operational decisions involve some assessment of risk – or at least they should. Identifying these decisions and analyzing them allows a company to see all the places where risk enters the system.

This more decision-centric thinking positions a company for controlling and managing risk as it is acquired. Predictive analytic techniques can be used to score each decision for risk – how risky is it to offer this customer this line of credit, how risky is this trade or deal, how likely is this transaction to be fraudulent and so on. Combining this kind of predictive model – focused on estimating the likely future risk of an individual transaction or customer – with optimization technologies to be used to manage tradeoffs and business rules technology to manage actions and compliance allows risk-aware automation of these decisions. Now the systems and processes that support day to day operations are managing risk before it is acquired, not just reporting on it after the fact.

For more on this check out some of my posts like this one on the value of treating operational decision making as a corporate asset, this one on using decision management to manage risk and this one on how decision-centric organizations focus on decisions.

TAGGED:business rulesdecision managementdecisioning technologyoperational decisionsoptimizationpredictive analyticsRiskrisk management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

power supplies for ATX for data scientists
Why Data Scientists Should Care About SFX Power Supplies
Big Data Exclusive
AI for website optimization
Free Tools to Test Website Accessibility
Artificial Intelligence Exclusive
Generative AI models
Thinking Machines At Work: How Generative AI Models Are Redefining Business Intelligence
Artificial Intelligence Business Intelligence Exclusive Infographic Machine Learning
image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

What the business needs from business rules (a thought on mega trends)

4 Min Read
Female working in a Technical Support Team Gives Instructions with the Help of the Headsets. In the Background People Working and Monitors Show Various Information.
AnalyticsBig DataPredictive Analytics

Police Are Using Big Data To Predict Future Crime Rates

6 Min Read
big data improving ecommerce industry
AnalyticsBig DataExclusive

Here’s How Big Data Analytics Has Changed the eCommerce Industry

7 Min Read

Some thoughts on rules, decisions, agility and more

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?