Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics: 8 Things to Keep in Mind (Part 3)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predictive Analytics: 8 Things to Keep in Mind (Part 3)
Business IntelligenceData MiningPredictive Analytics

Predictive Analytics: 8 Things to Keep in Mind (Part 3)

Editor SDC
Editor SDC
5 Min Read
SHARE

Theme 3: Integrating third-party data into predictive analysis


This is the third installment of the eight part series on predictive analytics (see part 1, part 2).

Perhaps one of the most significant opportunities for organizations using predictive analytics is incorporating new relevant third-party data into their analysis and decision-making process.  Investment in a targeted and relevant dataset generates far greater returns than spending time in developing sophisticated models without the right dataset.

More Read

Gamification and Social Gaming
Spotlight on Traitify: Who The Hell Are You, Anyway?
BI contribution to the annual plan
More Milk Please, Ermintrude! A Classic Decision Trap?
3 Companies That Highlight The Power Of Crowdfunding For VR

Suppose a wedding gown retailer wants to pursue a geographical expansion strategy. How would they determine where to open new stores? For that matter how should they evaluate the performance of existing stores?  Should a store in Chicago suburbs produce the volume of business as a store in Austin?

To answer the above questions, you need a lot of data that is not within the organization’s firewalls. One will need to know where people are getting married (demand in a market), how many competitor stores sell wedding gowns in the same area (competitive intensity in a market), how far potential brides are willing to travel to buy a wedding gown…

Theme 3: Integrating third-party data into predictive analysis


This is the third installment of the eight part series on predictive analytics (see part 1, part 2).

Perhaps one of the most significant opportunities for organizations using predictive analytics is incorporating new relevant third-party data into their analysis and decision-making process.  Investment in a targeted and relevant dataset generates far greater returns than spending time in developing sophisticated models without the right dataset.

Suppose a wedding gown retailer wants to pursue a geographical expansion strategy. How would they determine where to open new stores? For that matter how should they evaluate the performance of existing stores?  Should a store in Chicago suburbs produce the volume of business as a store in Austin?

To answer the above questions, you need a lot of data that is not within the organization’s firewalls. One will need to know where people are getting married (demand in a market), how many competitor stores sell wedding gowns in the same area (competitive intensity in a market), how far potential brides are willing to travel to buy a wedding gown (real estate costs in city vs. suburbs will be vastly different), income and spend profile of people in the market (how much are customers willing to spend)

Marriage registration data from NCHS, socio-demographic data from a company like Claritas or US census, business data from Dun & Bradstreet or InfoUSA, cost data for real estate and maybe a custom survey data of potential brides should all be input variables into the store location analysis. Data about existing store sales and customer base are important, but they tell only part of the story and do not provide the entire context to make the right decisions.

Using the above data the retailer will be able to identify favorable markets with higher volumes and growth in marriages and appropriate competitive profiles. It can also use existing store performance data to rank the favorable markets using a regression or cluster analysis and then corroborate the insights using mystery shopping or a survey. Such a data driven methodology represents a quantum improvement over how new store locations are identified and evaluated.  While the datasets are unique to the problem, I find that such opportunities exist in every organization. A clear framing of the problem, thinking creatively about the various internal or external data, and targeted analysis leading to significantly better solutions is what information advantage is all about.

We are in the midst of an open data movement, with massive amounts of data being released by the government under the open government directive. Private data exchanges are being set up by Microsoft, InfoChimps among others. Not to mention all the new types of data now available (e.g., twitter stream data). Companies that build capabilities to identify, acquire, cleanse and incorporate various external datasets into their analysis will be well positioned to gain the information advantage

Link to original post

TAGGED:business intelligencedata miningDecision Makingpredictive analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Top 10 Reasons Organizations Fail to Achieve Widespread BI User Adoption

6 Min Read

Please complete: “There are things known and things unknown and in between …”

4 Min Read
collecting big data
AnalyticsBig DataBusiness IntelligenceExclusive

5 Innovative Ways Small Companies Can Collect Big Data

8 Min Read
Image
Analytics

How to Ask Smart BI/Analytics Questions

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?