Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: BI 2010 – Optimizing revenue collection
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > BI 2010 – Optimizing revenue collection
Business IntelligenceData Warehousing

BI 2010 – Optimizing revenue collection

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Eugene from SARS, the South African Revenue Service, presented next on how SARS is using BI in revenue collection. He began by pointing out that there is a difference in how public sector organizations use BI – a focus on service delivery not profits, on taxpayers not customers, enforcement campaigns not marketing campaigns and so on. Of course public sector organizations still want an ROI, operational efficiency and use KPIs for performance management.

SARS has a wide range of core systems as well as a set of external data sources. Initially the IT department just dumped data from the source systems to their business users. This was replaced with a more formal information management department that responded to requirements defined by analysis teams but still hit the source systems. Capacity constraints led to an enterprise data warehouse (Teradata) but the Information Management department could not meet the demand for new reports etc…

More Read

Image
Business Analytics – Close to Your Heart
Can AI Help You Get Better Headshots?
Really Simple Statistics: What is Nominal Data?
Twitter Roundup of Last Week’s TDWI Conference
7 Steps to a Smooth CRM Implementation

Eugene from SARS, the South African Revenue Service, presented next on how SARS is using BI in revenue collection. He began by pointing out that there is a difference in how public sector organizations use BI – a focus on service delivery not profits, on taxpayers not customers, enforcement campaigns not marketing campaigns and so on. Of course public sector organizations still want an ROI, operational efficiency and use KPIs for performance management.

SARS has a wide range of core systems as well as a set of external data sources. Initially the IT department just dumped data from the source systems to their business users. This was replaced with a more formal information management department that responded to requirements defined by analysis teams but still hit the source systems. Capacity constraints led to an enterprise data warehouse (Teradata) but the Information Management department could not meet the demand for new reports etc while the business users wanted more control. Their current state is that of having their information management department acting as an enabler for business departments to manage their own BI capabilities. The technical architecture behind this has a primary staging layer for moving data into a production warehouse Operational Data Store and a secondary staging area supporting BI and data mining warehouses. This two stage approach allows them to present historical data through the lens of constantly changing business rules. A metadata repository underpins this and a presentation layer gives users access to reports, cubes etc.

SARS presents strategic summaries, aligned with the KPIs, as dashboards for the executive level who are typically considered measurement users. Tactical reports and dashboards are delivered to regional offices. These users tend to be exploratory users. Finally operational intelligence is delivered to execution users at the operational, branch level. The different levels consume different kinds of analytics.

SARS has learnt not to pursue big bang projects, to mix business and IT people, to plan for poor data quality and for peak season volumes and to manage change. From a business perspective they focus on changing how business people request data/reports, on showing ROI and on embracing user empowerment and self-service.

They use standard reporting on things like ontime filing, with an ability to drill down into zones, industries and more as well as self-service for reporting on metrics against various dimensions, slice and dicing etc. More interestingly they use various advanced analytics to catch fraud etc. For instance, a company might under report its corporate income tax and over-report the VAT it paid so that it continually gets refunds. However, this is a challenge because:

  • Some critical fields are not mandatory
  • It can be hard to correlate these two kinds of tax return
  • Suspicious activity may have been reported but it is purely unstructured text.
  • At the end of the day the intent is to find those organizations who are truly suspicious so data on registration, status, payment rates/timeliness must also be considered.
  • And not everyone can be pursued so who to call and who to audit.
  • Finally, are there linked entities that need to be closed down when a fraudster is found.

Advanced analytics are used in various ways:

  • Neural nets predict values, or at least buckets of values, for missing values
  • Statistically infer outliers
  • Text mine the unstructured text reports to see if there are patterns of reporting that will allow early investigation
  • All of this feeds into a risk engine that predicts the risk of fraud
  • They then predict who is likely to be reached by the call center to prioritize calls to these taxpayers
  • Next they predict the likelihood of a successful audit so that the auditors can prioritize their work
  • They use association and geospatial data to find clusters of suspicious organizations, linking directors, audit companies etc.
  • 3rd party information is brought in on things like houses and assets, travel etc to find suspicious mismatches between tax returns and lifestyle.

Great example of advanced analytics to detect fraud and catch tax evaders.


Link to original post

TAGGED:business intelligenceoperational data store
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Right Time Business Optimization

8 Min Read
business intelligence for exhibitions
Business Intelligence

Business Intelligence for Fairs, Congresses and Exhibitions

8 Min Read

Analyzing Olympic Success by Country with Data Visualization

7 Min Read
fintech big data evolution
Fintech

How Fintech Big Data Can Play A Role In Financial Evolution

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?