Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Standardizing Data Migration
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Standardizing Data Migration
Data Mining

Standardizing Data Migration

EvanLevy
EvanLevy
4 Min Read
SHARE

In the motion picture industry, studios separate responsibilities for creating content from responsibilities for distributing content. The people who make the movies option the scripts, hire the talent, and film the scenes. The distributors of the films, on the other hand, figure out how to package and deploy the films. They need to know which theaters require 30 millimeter versus 70 millimeter formats, or even IMAX. They also deal with DVD packaging, including different international DVD formats. The industry understands the importance of having a supply chain that differentiates between the roles of content creation, content packaging, and distribution. In…

The Motion Picture Industry

In the motion picture industry, studios separate responsibilities for creating content from responsibilities for distributing content. The people who make the movies option the scripts, hire the talent, and film the scenes. The distributors of the films, on the other hand, figure out how to package and deploy the films. They need to know which theaters require 30 millimeter versus 70 millimeter formats, or even IMAX. They also deal with DVD packaging, including different international DVD formats. The industry understands the importance of having a supply chain that differentiates between the roles of content creation, content packaging, and distribution.

In IT we’re very quick to point to our operational systems as creators and owners of data. But maybe the solution is that IT establishes a functional team that’s responsible for data packaging and distribution, just like the movie industry.

More Read

Market Penetration of Social Media – Who Uses Twitter?
Decision Management and Campaign Management In 2020
How Data Became Big
DQ is 1/3 Process Knowledge + 1/3 Business Knowledge + 1/3 Intuition
Big Analytics: Closing the ‘Clue Gap’ with Big Data

Traditionally data formats and standards have fallen into the realm of the architecture team. Unfortunately this is typically a paper-only activity without teeth. A data distribution team wouldn’t focus on paperwork. They would be focused on data logistics, receiving content from the various source systems and packaging the data for consumption by other systems. This isn’t about implementing a specific platform to store or move data. It’s about active management of corporate data content.

One of the biggest development challenges is the hunting expedition that developers go on to find and acquire the data they need. Most aren’t aware of all their choices, let alone the optimal systems of record.

Currently every application, data mart, data warehouse, reporting system that needs data from another system follows a specific set of procedures to obtain that data. Each system requests different data formats, different delivery schedules, and different content. Everything is custom, there are few if any standards, and there are no economies of scale.

This will also unburden the various application teams from building and maintaining the never ending volume of custom extract requests. The only way to stop the madness is to compartmentalize content creation from data packaging and distribution. This means establishing a data supply chain that separates data creators from data distribution from consumers. Who knew IT infrastructure was just like the movies?

Link to original post

TAGGED:data migrationdata quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

#16: Here’s a thought…

7 Min Read

The Napoleonic Wars – Timely and Near Enough was Good Enough

5 Min Read

Data Quality Whitepapers are Worthless

6 Min Read

Analytics: Not About Saving Time

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?