By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
    benefits of data analytics for financial industry
    Fascinating Changes Data Analytics Brings to Finance
    7 Min Read
    analyzing big data for its quality and value
    Use this Strategic Approach to Maximize Your Data’s Value
    6 Min Read
    data-driven seo for product pages
    6 Tips for Using Data Analytics for Product Page SEO
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: #11: Here’s a thought…
Share
Notification Show More
Latest News
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
ai in ppc advertising
5 Proven Tips for Utilizing AI with PPC Advertising in 2023
Artificial Intelligence
data-driven image seo
Data Analytics Helps Marketers Substantially Boost Image SEO
Analytics
ai in web design
5 Ways AI Technology Has Disrupted Website Development
Artificial Intelligence
cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > #11: Here’s a thought…
Business IntelligencePredictive Analytics

#11: Here’s a thought…

brianfarnan1
Last updated: 2009/05/25 at 6:50 PM
brianfarnan1
7 Min Read
SHARE
- Advertisement -

An occasional series in which a review of recent posts on SmartData Collective reveals the following nuggets:

The eternal quest: better data
Data governance and data quality are often the domain of data quality vendors, but any technology that can help your quest to achieve better data is worth exploring. Rather than fixing up data after it has been corrupted, it’s a good idea to use preventative technologies to stop poor data quality in the first place.

- Advertisement -
—Steve Sarsfield: “Guiding Call Center Workers to Data Quality”

The devil in the details
The long-term problem of understanding metadata remains challenging, however – especially within organizations. Indeed, most of the effort of implementing business intelligence projects often goes into trying to determining what people are trying to measure – i.e. which data sources need to be connected to each other, and how common business terms should be calculated. It’s one of those areas that exasperate business users: “How hard can it be to give me sales revenue by product?!” But the IT department understands that the devil is in the details.

—Timo Elliott: “The Inevitable Wolfram|Alpha Problem: Semantics”

…

More Read

analyzing big data for its quality and value

Use this Strategic Approach to Maximize Your Data’s Value

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing
Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC
Quality Control Tips for Data Collection with Drone Surveying
3 Huge Reasons that Data Integrity is Absolutely Essential


An occasional series in which a review of recent posts on SmartData Collective reveals the following nuggets:

The eternal quest: better data
Data governance and data quality are often the domain of data quality vendors, but any technology that can help your quest to achieve better data is worth exploring. Rather than fixing up data after it has been corrupted, it’s a good idea to use preventative technologies to stop poor data quality in the first place.

—Steve Sarsfield: “Guiding Call Center Workers to Data Quality”

The devil in the details
The long-term problem of understanding metadata remains challenging, however – especially within organizations. Indeed, most of the effort of implementing business intelligence projects often goes into trying to determining what people are trying to measure – i.e. which data sources need to be connected to each other, and how common business terms should be calculated. It’s one of those areas that exasperate business users: “How hard can it be to give me sales revenue by product?!” But the IT department understands that the devil is in the details.

- Advertisement -
—Timo Elliott: “The Inevitable Wolfram|Alpha Problem: Semantics”

Software alone won’t cut it
And where software is purchased, there is usually many times more the cost of the software in training and consulting to help understand better how to use the software… But even with software, unless there is clear thinking about the problems that need to be solved, and which ones can be solved realistically (or impacted) with analytics, the software will just sit, doing nothing useful. This is surely a factor in the divide between potential capabilities in analytics (i.e., software on the shelf) and benefits attained by analytics.

—Dean Abbott: “Is analytics a winner in a recession?”

Faster, better
For you SQL jockeys, most of the heavy-lifting in database processing is in the where clause. Columnar databases are faster because their processing isn’t inhibited by unnecessary row content. Because many database tables can have upwards of 100 columns, and because most business questions only request a handful of them, this just makes business sense. And In these days of multi-billion row tables and petabyte-sized systems, columnar databases make more sense than ever.

—Evan Levy: “The Rise of the Columnar Database”

Driving the transformation
Many firms have used the recession as an opportunity to focus much harder internally on eliminate wastage and streamlining poor process flows, which has effectively put them in a much healthier position to move into outsourcing environments that can be underpinned by robust ERP and standardized processes. Other firms have not been so diligent, and are looking for providers to take on their back-office baggage and grant them cost-savings. In these situations, the onus on the service provider to help its client refine their processes is very strong. If the service provider fails to help drive the transformation in tandem with the client’s governance leadership, the engagement is unlikely to reap many rewards for either party.

—Phil Fersht: “Globalizing the business is the key to outsourcing today”

Come out, come out, whoever you are
Just imagine how easy it would be for someone who didn’t like you do start posting embarrassing comments and signing them with your name. Or perhaps someone might pursue a more subtle strategy, such as posting reasonable-sounding comments in order to advance an agenda. Less speculatively, we’ve seen how anonymity can be troublesome for the integrity of Wikipedia editing. Given the growing role of social media, we’re going to have to cross this information accountability bridge sooner or later. I hope it’s sooner. Would it be nice if we developed a cultural norm that people stood proudly behind their online words?

—Daniel Tunkelang: “Approach and Identify”

Think about it
It appears that the datasets available now are heavy on the earth sciences areas, but according to the FAQ, more datasets will be available. There’s even a place to request new datasets. Most surprising, to me, is the fact that the site offers the ability to rate the utility, usefulness, and ease of access for the data. I wonder how many of us are providing that feature to our users?

- Advertisement -
—Karen Lopez: “Data.gov is Live: Access US Federal Data”

TAGGED: columnar databases, data quality, information accountability, metadata, outsourcing
brianfarnan1 May 25, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
- Advertisement -

Follow us on Facebook

Latest News

ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
ai in ppc advertising
5 Proven Tips for Utilizing AI with PPC Advertising in 2023
Artificial Intelligence
data-driven image seo
Data Analytics Helps Marketers Substantially Boost Image SEO
Analytics
ai in web design
5 Ways AI Technology Has Disrupted Website Development
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
data lineage tool
Big Data

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing

6 Min Read
data quality and role of analytics
Data Quality

Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC

8 Min Read
data collection with drone use
Data Collection

Quality Control Tips for Data Collection with Drone Surveying

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?