Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The sentiment on US Economy from Twitter
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > The sentiment on US Economy from Twitter
Data Mining

The sentiment on US Economy from Twitter

ThemosKalafatis
ThemosKalafatis
6 Min Read
SHARE

Is the economic crisis over? What is the sentiment of people regarding US Economy and the future? These are some of the questions that many people ask these days and the signs are somewhat mixed. Dow Jones is close to the 10000 mark and some US Economy Indices show that the worse is behind. But do people feel the same?

To answer these questions 10000 tweets containing the word economy were collected with the purpose of finding out what people think and how they feel about the US Economy and the economic crisis. The following web chart shows some of the results:


PositiveSentiment is an annotation type that includes all words that suggest positivity such as good, better, advances, while the opposite annotation (NegativeSentiment) exists for all keywords that suggest negativity.

The bolder the lines between words the heavier the association. To get an idea of how people feel, look at the line that connects NegativeSentiment and the word still, which implies that the strongest sentiment is that US Economy is still under big problems.

More Read

Who I Want at the Business Intelligence Table
First Look – New Visual Numerics products
NoSQL Vs. RDBMS for Interactive Analytics: Leveraging the Right and Left Brain of Data
Images from “Contact lenses with circuits, lights a…
The Golden Rule

Some other findings :

  • US President tells that the economy gets better but people don’t feel the same.
  • Economy cannot be getting better while at the same .. …



Is the economic crisis over? What is the sentiment of people regarding US Economy and the future? These are some of the questions that many people ask these days and the signs are somewhat mixed. Dow Jones is close to the 10000 mark and some US Economy Indices show that the worse is behind. But do people feel the same?

To answer these questions 10000 tweets containing the word economy were collected with the purpose of finding out what people think and how they feel about the US Economy and the economic crisis. The following web chart shows some of the results:


PositiveSentiment is an annotation type that includes all words that suggest positivity such as good, better, advances, while the opposite annotation (NegativeSentiment) exists for all keywords that suggest negativity.

The bolder the lines between words the heavier the association. To get an idea of how people feel, look at the line that connects NegativeSentiment and the word still, which implies that the strongest sentiment is that US Economy is still under big problems.

Some other findings :

  • US President tells that the economy gets better but people don’t feel the same.
  • Economy cannot be getting better while at the same time there are layoffs.
  • People expressing very negative feelings after losing their jobs.

Notice also the association between NegativeSentiment and people, job, money, sales. Interesting insights can also be found if brand names and product categories are also taken into account: In this analysis a specific brand was found that was associated with word sales and a good overall sentiment. Buying behavior can also be found regarding consumer intentions when the time is right.

You will also find that an association exists between finance_institution keywords (implying keyword Fed) and PositiveSentiment. This association exists because a number of re-tweets is about the Fed signaling the start of exit from recession and its impact on housing. Interesting also is the association between the words fool and annotation PositiveSentiment (…)

Specific tweets were removed such as spam tweets (that try to sell investing products). Re-tweets were kept intact since we are making the assumption that if someone re-tweets – say, a positive sentiment tweet – then he/she also feels the same – positive – sentiment. Tweets that were jokes were identified, marked accordingly and removed.

As with many examples in the past, the software that was used consisted of GATE (for annotating unstructured text from Tweets) but also SPSS Clementine (now PASW Modeller). Here is the setup from GATE :


Specific rules (JAPE) were used that identify and annotate accordingly negative and positive sentiment. Consider the following sentences:

  • The economy is most likely bad at the moment
  • If the economy is great then why so many people can’t find a job?

The first sentence has clearly a negative sentiment since the word bad exists. However the second phrase contains the word great, so a specific matching rule should take into consideration the word If and annotate this phrase as one having negative sentiment despite the presence of word great.

After running GATE, here is how the now-structured data look like from a smaller sample of the original dataset (notice the highlighted record and the IfGood flag) :


With data in a structured form as the one depicted above, we are then ready to identify which tweets were found having a positive or negative sentiment, see erroneous annotations, take corrective actions, and finally analyze the information and extract knowledge from it.

Link to original post

TAGGED:economic recovery
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

It’s not about recovery, it’s about reinvention!

7 Min Read
big data aids with economic recovery after covid
Artificial Intelligence

Investing in Big Data and AI for Post-COVID-19 Success

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?