Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
Β© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Means and Proportions with two populations
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
Β© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Means and Proportions with two populations
Predictive Analytics

Means and Proportions with two populations

romakanta
romakanta
7 Min Read
SHARE

Statistical inference about means and proportions with two populations seems to be one of the most commonly used applications in the field of analytics – comparing campaign response rates between 2 groups of customers, pre and post campaign sales, membership renewal rates, etc.

Call it chance or whatever, but whenever these kind of tasks came up I hear people talking about the t-tests only. No issues as long as you want to compare means or when your target variable is a continuous value. But how or why do people talk about the t-test when they want to compare ratios or proportions? Whatever happened to the Chi-Square tests or the Z-test for difference in proportions?

I did a bit of research on the net, a bit of calculation using pen and paper [very good exercise for the brain in this age of calculators and spreadsheets πŸ™‚ ], read a very good article by Gerard E. Dallal, and I found the answers.

Going back to our introductory class in statistics, let’s check out the formulae for the t-tests.

More Read

Predictive modeling and today’s growing data challenges
The Apocalypse of Abundance: 5 Steps to End the Insanity of Information Overload
Predictive Analytics Is Lifting The ROI Of POS Marketing
Underestimating the tails
Coming Trends in Analytics Application and Implementation

1. Assuming that the population variances are equal,
T = (X1 – X2)/sqrt (Sp2(1/n1 + 1/n2) ……….Equation 1

where
X1, X2 = means of sample 1 and 2
n1, n2 = size of sample 1 and 2
Sp = pooled …


Statistical inference about means and proportions with two populations seems to be one of the most commonly used applications in the field of analytics – comparing campaign response rates between 2 groups of customers, pre and post campaign sales, membership renewal rates, etc.

Call it chance or whatever, but whenever these kind of tasks came up I hear people talking about the t-tests only. No issues as long as you want to compare means or when your target variable is a continuous value. But how or why do people talk about the t-test when they want to compare ratios or proportions? Whatever happened to the Chi-Square tests or the Z-test for difference in proportions?

I did a bit of research on the net, a bit of calculation using pen and paper [very good exercise for the brain in this age of calculators and spreadsheets πŸ™‚ ], read a very good article by Gerard E. Dallal, and I found the answers.

Going back to our introductory class in statistics, let’s check out the formulae for the t-tests.

1. Assuming that the population variances are equal,
T = (X1 – X2)/sqrt (Sp2(1/n1 + 1/n2) ……….Equation 1

where
X1, X2 = means of sample 1 and 2
n1, n2 = size of sample 1 and 2
Sp2 = pooled variance = [((n1-1)S12+(n2-1)S22)/(n1+n2-2)]

2. Assuming that the population variances are not equal,
T = (X1 – X2)/sqrt(S12/n1 + S22/n2) ……….Equation 2

We have also been taught that the test statistic Z is used to determine the difference between two population proportions based on the difference between the two sample proportions (P1 – P2).

And the formula for the Z statistic is given by
Z = (P1 – P2)/ sqrt(P(1-P)(1/n1 + 1/n2)) ……….Equation 3

where
P1, P2 = proportions of success (or target category) in samples 1 and 2
S1, S2 = variances for samples 1 and 2
n1, n2 = size of samples 1 and 2
P = pooled estimate of the sample proportion of successes =(X1 + X2) / (n1 +n2)
X1, X2 = number of successes (or target category) in samples 1 and 2

The test statistic Z (equation 3) is equivalent to the chi- square goodness-of-fit test, also called a test of homogeneity of proportions.

But how different is the proportions from means? The proportion having the desired outcome is the number of individuals/observations with the outcome divided by total number of individuals/observations. Suppose we create a variable that equals 1 if the subject has the outcome and 0 if not. The proportion of individuals/observations with the outcome is the mean of this variable because the sum of these 0s and 1s is the number of individuals/observations with the outcome.

Let’s suppose there are m 1s and (n-m) 0s among the n observations. Then, XMean (=P) =m/n and is equal to (1-m/n) for m observations and 0-m/n for (n-m) observations. When these results are combined, the final result is

βˆ‘(Xi – XMean)2 = m(1-m/n)2 + (n – m) (0 – m/n)2
= m(1 – 2m/n + m2/n2) + (n – m) m2/n2
= m – 2(m2/n2) + (m3/n2) + (m2/n) – (m3/n2)
= m – (m2/n)
= m(1-m/n)
= nP(1-P)

So, variance = βˆ‘(Xi – XMean)2/n = P(1-P)

Substituting this in the equation 3 (for Z statistic), we get
(P1 – P2)/ sqrt(Variance/n1 + Variance/n2)), which is not so different from equation 2 (the formula for the β€œequal variances not assumed” version of t test).

As long as the sample size is relatively large, the distributional assumptions are met, and the response is binomial – the t test and the z test will give p-values that are very close to one another.

And in the case where we have only two categories, the z test and the chi-square test turn out to be exactly equivalent, though the chi-square is by nature a two-tailed test. The chi-square distribution for 1 df is just the square of the z distribution.

The various tests and their assumptions as listed in Wikipedia are given below:
1. Two-sample pooled t-test, equal variances
(Normal populations or n1 + n2 > 40) and independent observations and Οƒ1 = Οƒ2 and (Οƒ1 and Οƒ2 unknown)

2. Two-sample unpooled t-test, unequal variances
(Normal populations or n1 + n2 > 40) and independent observations and Οƒ1 β‰  Οƒ2 and (Οƒ1 and Οƒ2 unknown)

3. Two-proportion z-test, equal variances
n1 p1 > 5 and n1(1 βˆ’ p1) > 5 and n2 p2 > 5 and n2(1 βˆ’ p2) > 5 and independent observations

4. Two-proportion z-test, unequal variances
n1 p1 > 5 and n1(1 βˆ’ p1) > 5 and n2 p2 > 5 and n2(1 βˆ’ p2) > 5 and independent observations

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

NYC Loves Obama – A closer look (but not too close)

1 Min Read

Predictive Analytics Q & A with Gregory Piatetsky-Shapiro

8 Min Read
Smart data chocolate
Predictive Analytics

Even Chocolate Needs Smart Data

4 Min Read
social data analysis
AnalyticsBest PracticesBig DataBusiness IntelligenceData MiningDecision ManagementModelingPolicy and GovernancePredictive AnalyticsRisk ManagementSocial Data

How “Big Data” Is Protecting the Enterprise Against Growing Social Risk

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
Β© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?