Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Practitioner Interview with Brett Cohen of AOL
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Practitioner Interview with Brett Cohen of AOL
AnalyticsPredictive Analytics

Practitioner Interview with Brett Cohen of AOL

EricSiegel
EricSiegel
5 Min Read
Image
SHARE

ImageIn anticipation of his upcoming conference presentation at Predictive Analytics World Boston, “How Much Are You Worth?

ImageIn anticipation of his upcoming conference presentation at Predictive Analytics World Boston, “How Much Are You Worth? – Calculating Customer Lifetime Value,”  we asked Brett Cohen, Senior Business Intelligence Analytist at AOL, a few questions about his work in predictive analytics.

Q. In your work with predictive analytics, what behavior do your models predict (e.g., attrition, response, fraud, etc.)?

A. My models predict customer lifetime value as well as churn in customer engagement.

More Read

Using Analytics to Stay on Top of the Regulatory Landscape
Big Data Analytics Is The 21st Century’s Biggest Disruptor In Healthcare
Big Data Trends For 2016 – Predictions by Biggies
Amazon Wants to Use Predictive Analytics to Offer Anticipatory Shipping
The Real Definition of Business Intelligence [VIDEO]

Q. How does predictive analytics deliver value at your organization? What is one specific way in which it actively drives decisions?

A. At AOL, predictive analytics helps us decide which partnerships we should invest more in and which ones we should abandon. Our models show which partners will provide a positive ROI and looking at how engagement and lifetime value are trending in our model, we are not only better equipped to make these decisions, we can make them much quicker than before (incorporating a predictive analytics model).

Q. Can you describe a successful result, such as the predictive lift of your model or the ROI of an analytics initiative?

A. Originally, our model predicted lifetime value of traffic generated from the various partners on a monthly basis – looking at different cohorts every 30 days. With one partner, in the first half of a 30 day cohort, we noticed that engagement and ROI was much lower than usual, so we sprung into action and adjusted our model to look at the data on a weekly basis as well and predict engagement trends on a week to week basis, as well as work with the partner as to how to get their engagement up to a level that was acceptable and ROI positive. Now, we look at this for every partner to anticipate issues like this before they arise again.

Q. What surprising discovery have you unearthed in your data?

A. One surprising discovery that I have unearthed in my data is that month 1 engagement (not monetization) is the leading predictor of customer lifetime value. The higher engagement of customers in the first month, regardless of monetization, will drive a higher LTV than a similar increase in monetization (in our model, monetization is CPC – cost per click). For example, a 10% higher CPC will have a smaller impact on LTV than a 10% higher month 1 engagement.

Q. Sneak preview: Please tell us a take-away that you will provide during your talk at Predictive Analytics World.

A. By taking a step back from the complex data intensive models, you will see how we created a 3 pronged model looking at audience, engagement, and monetization to predict the lifetime value of users coming from different properties or partners. This model is proven empirically, when looking at the expected (predicted) vs. actual data. You will also see how this model is adaptable to other areas and by changing the individual metrics that are measured, you can look at the lifetime value of customers in nearly any industry – not only what is the value of someone who came to a website; but how much is someone who enters a store worth or how much is someone who signs up for a mailing list worth, amongst others.

Q. What has been some feedback from stakeholders?

A. From the team that is in charge of the partnerships that my predictive models help assess: “this is an awesome tool that really helps us make smart decisions” and “the ability to get accurate LTVs timely has been helpful in making some quick allocation decisions.”

TAGGED:aol
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

What carries you up will also bring you down

5 Min Read

Privacy regulations: fear, loathing and AOL

3 Min Read

On AOL and Small Data

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?