Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: La Trahison des Données
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > La Trahison des Données
Uncategorized

La Trahison des Données

TeradataEMEA
TeradataEMEA
6 Min Read
SHARE

There is a potential fallacy that we hardly ever address: Isn’t there a risk that business intelligence systems – seemingly – become just too good? That they describe the market, the customer etc. so accurately that business users will consider this information as reliable as first-hand experience and forget that they can only see what they are being shown? Maybe these users should receive frequent warnings that say something like “Ceci n’est pas un pipe.” These are the famous words that the Belgian surrealist artist René Magritte wrote under his painting La Trahison des Images, which shows – a pipe.

magritte-trahison-des-imag(1)

The comment is intended to remind viewers that they are looking at a piece of art, not the actual objet. They can’t smoke this pipe, no matter how well it’s depicted. They can’t even tell what the actual pipe really looks like or whether it has existed in the first place. This is an essential idea to keep in mind when dealing with information systems. It’s tempting to believe that you have full and valid information at your hand, especially in highly endemic systems. But is it really true?

During the recent credit crunch, some people in the financial markets found out that it …

More Read

The difference between Statistics and Machine Learning
How Big Data and Analytics Are Changing Football
False Relationships
Guerrilla Social Media Marketing: Features and Benefits List
Is Nepotism Undermining Your Business Technology Innovation?

There is a potential fallacy that we hardly ever address: Isn’t there a risk that business intelligence systems – seemingly – become just too good? That they describe the market, the customer etc. so accurately that business users will consider this information as reliable as first-hand experience and forget that they can only see what they are being shown? Maybe these users should receive frequent warnings that say something like “Ceci n’est pas un pipe.” These are the famous words that the Belgian surrealist artist René Magritte wrote under his painting La Trahison des Images, which shows – a pipe.

magritte-trahison-des-imag(1)

The comment is intended to remind viewers that they are looking at a piece of art, not the actual objet. They can’t smoke this pipe, no matter how well it’s depicted. They can’t even tell what the actual pipe really looks like or whether it has existed in the first place. This is an essential idea to keep in mind when dealing with information systems. It’s tempting to believe that you have full and valid information at your hand, especially in highly endemic systems. But is it really true?

During the recent credit crunch, some people in the financial markets found out that it wasn’t. They thought they were Masters of the Universe when they were, in fact,  Boys in the Bubble. Business users, therefore, must rate the informative value of their various indicators. At the same time, they absolutely need to be able to rely on the quality of the underlying data.

Ensuring that data quality is at a high level is one of the most important functions of any data management unit. It is an interminable process that sometimes gets underrated. The backbone of broader quality initiatives is a sound master data management. Master data, as opposed to transactional data, describe items like product and customer names, addresses etc. These data will be stored and reused in the long run but very often change over time.

For example, people change their names or move their residence to new cities. Here they may make a new contract with their previous telecommunications provider at a different point-of-sale than before and may be registered as a new customer, not as the one already known. Thus the quality of the master data deteriorates, unless there are organizational processes put in place that make sure that the customer data are permanently reconciled. Without such procedures, any analysis of the provider’s customer wins and losses would be flawed from the start. So let’s not forget: Ceci n’est pas un client.

Obviously, the EDW approach of storing all data in one place, organized by a logical data model, facilitates quality-ensuring procedures of master data and other data. Still it’s not a trivial matter. The logical data model must be flexible enough to capture unexpected categories like, for example, official (as opposed to biological) birthdays in some countries. In retail, product data must capture temporary changes in package sizes, which are typically used during special offers, to make any meaningful analysis of the sales results possible. And just to return to the financial sector, detection of money laundering would be a great deal harder if banks couldn’t figure out whether a single person own several accounts within (and beyond) their organization. An effective master data management means that the data betrays the fraud, not the bank. And that’s my idea of la trahison de données.

Eric Joilé

TAGGED:data qualityinformation systems
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

multi model ai
How Teams Using Multi-Model AI Reduced Risk Without Slowing Innovation
Artificial Intelligence Exclusive
top data visualization tools
5 Top Data Visualization Tools for Research Projects
Big Data Data Visualization
cybersecurity tools
Evaluating the Best Value Cybersecurity Platforms for Enterprises
Exclusive IT Security
ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

The Once and Future Data Quality Expert

10 Min Read

Hyperactive Data Quality

8 Min Read

Identifying Duplicate Customers

2 Min Read

Tweet 2001: A Social Media Odyssey

13 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?