Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Internet of Things Could Stop Our Waterways from Dying
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The Internet of Things Could Stop Our Waterways from Dying
Uncategorized

The Internet of Things Could Stop Our Waterways from Dying

Joshua New
Joshua New
5 Min Read
Image
SHARE

ImageWhen high concentrations of nitrogen and phosphorous build up in waterways, as a result ofpolluting activities like over-fertilizing crops and burning fossil fuels, there can be devastating effects on ecosystems, the economy, and human health.

ImageWhen high concentrations of nitrogen and phosphorous build up in waterways, as a result ofpolluting activities like over-fertilizing crops and burning fossil fuels, there can be devastating effects on ecosystems, the economy, and human health. These elements are essential to plant growth, but too much can create ideal conditions for potentially deadly toxic algae and parasites and can lead to “dead zones”—areas, such as those in Maryland’s Chesapeake Bay, where rapid algal growth blocks so much sunlight and consumes so much oxygen that other plants, fish, and shellfish cannot survive. Advances in sensor technology have made it possible to collect and analyze real-time data about the presence of these elements in waterways to better protect against these kinds of environmental disasters, which cause $2.2 billion in damages every year in the United States alone. However, universities, scientists, environmental groups, and regulators on limited budgets have been unable to take advantage of nitrogen and phosphorous sensors because of their high cost. But now, a joint initiative by a handful of U.S. government agencies and research institutions, including the Environmental Protection Agency (EPA) and Tulane University, called the Nutrient Sensor Challengeaims to address this problem by facilitating the development of low-cost sensors while simultaneously demonstrating the demand for these devices to the private sector.

The challenge is straightforward: teams will compete to produce sensors that can, at a minimum, operate reliably underwater for three months without human interaction, measure dissolved nitrogen and phosphorus, be easy to use, report data in real time, and cost less than $5,000 to purchase. Winning teams will get exposure to potential partners and investors that could help them bring these devices to market. And the market for such devices is substantial—preliminary research indicatesthat a small number of state agencies, local governments, and federal programs would purchase thousands of these sensors alone—and this demand will likely grow larger as more states develop nutrient reduction programs.

Registration for the challenge closed in March 2015, and the project’s leaders at the EPA have told the Center for Data Innovation that 29 teams have registered to compete. Data from beta testing, which will begin in the fall, will only be available to the teams themselves so that teams can use this feedback to improve their product for the official testing phase without having to worry that any early hiccups might negatively color their exposure to potential partners and investors. After beta testing ends, the project’s leaders will spend most of 2016 verifying the sensors in laboratory and field settings. Based on these results, the challenge’s leaders will announce a winner in December 2016, so that the winning sensor could potentially be commercially available in 2017.

More Read

More music to the ears of SOA enthusiasts
How Does Your Organization Use SharePoint?
ACM Recommendations on Open Government
The Future of the Grid: From Telecommunications to Cloud-Based Servers
7 Signs You’re Dealing with Complex Data

It is encouraging to see EPA and other agencies involved in the challenge turning to the Internet of Things to help solve an important public problem. These new data streams should not only improve existing agency programs, but could also provide entirely new avenues through which these agencies could serve the public. For example, if EPA and Department of Agriculture already had a robust nutrient sensing network in place, they could also rapidly detect and report spikes in toxic algae growth to nearby farmers that rely on natural water sources to sustain livestock or water their fields. Government agencies at all levels should take a similarly proactive approach and identify areas where new connected technologies could help improve agency programs and develop plans to integrate the Internet of Things into mission delivery.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

accountant using ai
AI Improves Integrity in Corporate Accounting
Exclusive
ai and law enforcement
Forensic AI Technology is Doing Wonders for Law Enforcement
Artificial Intelligence Exclusive
langgraph and genai
LangGraph Orchestrator Agents: Streamlining AI Workflow Automation
Artificial Intelligence Exclusive
ai fitness app
Will AI Replace Personal Trainers? A Data-Driven Look at the Future of Fitness Careers
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Pretty Words

3 Min Read

The Good News about MDM Market Consolidation

5 Min Read
Image
Uncategorized

5 Reasons Amazon Is Taking Over SEO

5 Min Read

BI & Analytic Trends for Business Value

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?