By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    football analytics
    The Role of Data Analytics in Football Performance
    9 Min Read
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The Data-Information Continuum
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The Data-Information Continuum
Uncategorized

The Data-Information Continuum

JimHarris
Last updated: 2009/06/20 at 10:29 PM
JimHarris
7 Min Read
SHARE

Data is one of the enterprise’s most important assets. Data quality is a fundamental success factor for the decision-critical information that drives the tactical and strategic initiatives essential to the enterprise’s mission to survive and thrive in today’s highly competitive and rapidly evolving marketplace.

Contents
The Data-Information ContinuumThe Data-Information ContinuumObjective Data QualitySubjective Information QualityA “Single Version of the Truth” or the “One Lie Strategy”Conclusion

When the results of these initiatives don’t meet expectations, analysis often reveals poor data quality is a root cause. Projects are launched to understand and remediate this problem by establishing enterprise-wide data quality standards.

However, a common issue is a lack of understanding about what I refer to as the Data-Information Continuum.

The Data-Information Continuum

In physics, the Space-Time Continuum explains that space and time are interrelated entities forming a single continuum. In classical mechanics, the passage of time can be considered a constant for all observers of spatial objects in motion. In relativistic contexts, the passage of time is a variable changing for each specific observer of spatial objects in motion.

More Read

analyzing big data for its quality and value

Use this Strategic Approach to Maximize Your Data’s Value

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing
Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC
Quality Control Tips for Data Collection with Drone Surveying
3 Huge Reasons that Data Integrity is Absolutely Essential

Data and information are also interrelated entities forming a single continuum. It is crucial to understand how they are different …

Data is one of the enterprise’s most important assets. Data quality is a fundamental success factor for the decision-critical information that drives the tactical and strategic initiatives essential to the enterprise’s mission to survive and thrive in today’s highly competitive and rapidly evolving marketplace.

When the results of these initiatives don’t meet expectations, analysis often reveals poor data quality is a root cause. Projects are launched to understand and remediate this problem by establishing enterprise-wide data quality standards.

However, a common issue is a lack of understanding about what I refer to as the Data-Information Continuum.

The Data-Information Continuum

In physics, the Space-Time Continuum explains that space and time are interrelated entities forming a single continuum. In classical mechanics, the passage of time can be considered a constant for all observers of spatial objects in motion. In relativistic contexts, the passage of time is a variable changing for each specific observer of spatial objects in motion.

Data and information are also interrelated entities forming a single continuum. It is crucial to understand how they are different and how they relate. I like using the Dragnet definition for data – it is “just the facts” collected as an abstract description of the real-world entities that the enterprise does business with (e.g. customers, vendors, suppliers). 

A common data quality definition is fitness for the purpose of use. A common challenge is data has multiple uses, each with its own fitness requirements. I like to view each intended use as the information that is derived from data, defining information as data in use or data in action.

Data could be considered a constant while information is a variable that redefines data for each specific use. Data is not truly a constant since it is constantly changing. However, information is still derived from data and many different derivations can be performed while data is in the same state (i.e. before it changes again). 

Quality within the Data-Information Continuum has both objective and subjective dimensions.

Objective Data Quality

Data’s quality must be objectively measured separate from its many uses.  Enterprise-wide data quality standards must provide a lowest common denominator for all business units to use as an objective data foundation for their specific tactical and strategic initiatives. Raw data extracted directly from its sources must be profiled, analyzed, transformed, cleansed, documented and monitored by data quality processes designed to provide and maintain universal data sources for the enterprise’s information needs. At this phase, the manipulations of raw data by these processes must be limited to objective standards and not be customized for any subjective use.

Subjective Information Quality

Information’s quality can only be subjectively measured according to its specific use. Information quality standards are not enterprise-wide, they are customized to a specific business unit or initiative. However, all business units and initiatives must begin defining their information quality standards by using the enterprise-wide data quality standards as a foundation. This approach allows leveraging a consistent enterprise understanding of data while also deriving the information necessary for the day-to-day operation of each business unit and initiative.

A “Single Version of the Truth” or the “One Lie Strategy”

A common objection to separating quality standards into objective data quality and subjective information quality is the enterprise’s significant interest in creating what is commonly referred to as a single version of the truth.

However, in his excellent book Data Driven: Profiting from Your Most Important Business Asset, Thomas Redman explains:

“A fiendishly attractive concept is…’a single version of the truth’…the logic is compelling…unfortunately, there is no single version of the truth. 

For all important data, there are…too many uses, too many viewpoints, and too much nuance for a single version to have any hope of success. 

This does not imply malfeasance on anyone’s part; it is simply a fact of life. 

Getting everyone to work from a single version of the truth may be a noble goal, but it is better to call this the ‘one lie strategy’ than anything resembling truth.”

Conclusion

There is a significant difference between data and information and therefore a significant difference between data quality and information quality.  Many data quality projects are in fact implementations of information quality customized to the specific business unit or initiative that is funding the project.  Although these projects can achieve some initial success, they encounter failures in later iterations and phases when information quality standards try to act as enterprise-wide data quality standards. 

Significant time and money can be wasted by not understanding the Data-Information Continuum.

Link to original post

TAGGED: data quality
JimHarris June 20, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Shutterstock Licensed Photo - 1051059293 | Rawpixel.com
QR Codes Leverage the Benefits of Big Data in Education
Big Data
football analytics
The Role of Data Analytics in Football Performance
Analytics Big Data Exclusive
smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
data lineage tool
Big Data

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing

6 Min Read
data quality and role of analytics
Data Quality

Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC

8 Min Read
data collection with drone use
Data Collection

Quality Control Tips for Data Collection with Drone Surveying

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?