By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    customer experience analytics
    Using Data Analysis to Improve and Verify the Customer Experience and Bad Reviews
    6 Min Read
    data analytics and CRO
    Data Analytics is Crucial for Website CRO
    9 Min Read
    analytics in digital marketing
    The Importance of Analytics in Digital Marketing
    8 Min Read
    benefits of investing in employee data
    6 Ways to Use Data to Improve Employee Productivity
    8 Min Read
    Jira and zendesk usage
    Jira Service Management vs Zendesk: What Are the Differences?
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Your Company’s Data Supply Chain
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Your Company’s Data Supply Chain
Business IntelligenceData Mining

Your Company’s Data Supply Chain

EvanLevy
Last updated: 2009/04/21 at 1:08 PM
EvanLevy
5 Min Read
SHARE
Chain
photo by BotheredByBees

At Baseline Consulting we’ve been talking for several years about the concept of a data supply chain. But IT executives are only now starting to catch on to its importance.

Over the past 15 years there has been a big push to standardize on off-the-shelf software. This allowed IT organizations to buy instead of build. We’ve migrated from proprietary architectures to Windows and Linux standards. We’ve gone from custom-built applications to packaged CRM and ERP applications. IT adopted this approach because its value is automating business processes and supporting analysis– not inventing new technologies. The problem is that moving data between all of these “packaged systems” still requires custom code.

There’s no question that middleware provides value: it delivers the pre-built data pipes. Unfortunately, these are toolkits requiring developers to write code to connect their packages to the pipes. Most CIOs are blissfully unaware of the amount of custom coding middleware requires. Trust me: IT spends an enormous amount of money on supporting such data migration solutions. Many IT shops still view middleware as sacred ground.

The data warehousing w…

Chain
photo by BotheredByBees

At Baseline Consulting we’ve been talking for several years about the concept of a data supply chain. But IT executives are only now starting to catch on to its importance.

Over the past 15 years there has been a big push to standardize on off-the-shelf software. This allowed IT organizations to buy instead of build. We’ve migrated from proprietary architectures to Windows and Linux standards. We’ve gone from custom-built applications to packaged CRM and ERP applications. IT adopted this approach because its value is automating business processes and supporting analysis– not inventing new technologies. The problem is that moving data between all of these “packaged systems” still requires custom code.

There’s no question that middleware provides value: it delivers the pre-built data pipes. Unfortunately, these are toolkits requiring developers to write code to connect their packages to the pipes. Most CIOs are blissfully unaware of the amount of custom coding middleware requires. Trust me: IT spends an enormous amount of money on supporting such data migration solutions. Many IT shops still view middleware as sacred ground.

The data warehousing world has enthusiastically adopted ETL tools to reduce custom coding so they can focus on the issues of data accuracy and usability. One fact lost in translation is that ETL integrates data– it’s more than just a pipe. The application world has adopted EAI, ESB, and orchestration to move data quicker. However, there’s no integration. Each application is responsible for integrating the data they receive.

So, there’s even more custom code. Code to connect an application to the pipes. Code to integrate and cleanup the data they receive from the pipes.
Custom code to move data around isn’t the answer. Orchestration, message passing, and data movement just creates a labyrinth of pipes. There are no economies of scale. The data doesn’t get better.

Walmart learned years ago that it was impractical to have a custom (and separate) distribution system for every supplier. They knew the cost benefits of a standard distribution system; this meant they needed to standardize the size of the trailers, the size of the boxes, and the way the boxes were packed and shipped. The benefits of a supply chain is that standardization occurs at the most cost effective point: the source. Walmart’s distribution success was measured by its ability to accept new suppliers and manage more shipments.

Most CIOs don’t recognize that they have a data supply chain. Instead of building a custom distribution system for each suppler (each business application), they should be focused on a single data supply chain. Middleware supports the creation of custom distribution solutions, but not the standardization of data. A data supply chain can only be successful if the data is standardized. Otherwise everyone is forced to write custom code to standardize, clean, and integrate the data.

Link to original post

TAGGED: data quality
EvanLevy April 21, 2009 April 21, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Cloud-Based Marketing
Smart Video Bloggers Are Leveraging Cloud-Based Marketing Tools
Cloud Computing IT Marketing
technology and security
Technology in Physical Security: A Guide to Business Safety
Exclusive IT Security
ai for stopping credit card theft
AI Can Manage Credit Card Cybersecurity Risks
IT Security
ai can help with nurse burnout
Breakthroughs in AI Are Helping to Prevent Nurse Burnout
Artificial Intelligence Exclusive

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

big data and agile
Big DataExclusive

Startups Use Data and Agile for Portfolio Management

5 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
data lineage tool
Big Data

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing

6 Min Read
data quality and role of analytics
Data Quality

Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?