Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Statistics and the Iranian election, ctd.
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Statistics and the Iranian election, ctd.
Uncategorized

Statistics and the Iranian election, ctd.

DavidMSmith
DavidMSmith
4 Min Read
SHARE

More statisticians are looking at the Iranian voting data for signs of fraud. Walter Mebane (University of Michigan) looks at district-level vote counts to check for violations of Benford’s Law. Benford’s Law is a characteristic of real-live numbers: the first digit is a 1 almost one-third of the time, with higher digits appearing increasingly infrequently. (It’s another example of a power-law distribution, such as we looked at with regard to city populations.) Elections that have been manipulated by hand are sometimes revealed by disaggregated poll counts violating Benford’s Law. Unfortunately, with only district-level data, deviation from Benford’s Law is unlikely…

More statisticians are looking at the Iranian voting data for signs of fraud. Walter Mebane (University of Michigan) looks at district-level vote counts to check for violations of Benford's Law. Benford's Law is a characteristic of real-live numbers: the first digit is a 1 almost one-third of the time, with higher digits appearing increasingly infrequently. (It's another example of a power-law distribution, such as we looked at with regard to city populations.) Elections that have been manipulated by hand are sometimes revealed by disaggregated poll counts violating Benford's Law.

Unfortunately, with only district-level data, deviation from Benford's Law is unlikely for this aggregated even if there were manipulation at the polling-station level, and indeed Mebane finds no such evidence in the Iranian Election data. 

More Read

Fifth Largest Country
Are You Really Ready for Data Governance?
Enterprise 2.0: It’s Still All About People
The Big Data Contrarians: New LinkedIn Big Data Community
The TV revolution: Changing the players
On the other hand, fitting an overdispersed Binomial model to the data reveals nine outlier districts where Ahmadinejad received an unusually high proportion of the vote (compared to Mousavi) — whether these are reasonable depends on knowledge of the political geography of Iran.

Conditioning the 2009 results on the 2005 results (when a boycott led many liberal voters — presumed Mousavi supporters — to not vote) results in a fit that one would expect "if the political processes like those that normally prevail in election in other places were also at work in the Iranian election of 2009". Yet many of those same districts as in the last analysis still appear as outliers where Ahmadinejad received significantly more support than predicted by the model. Mebane concludes:

In general, combining the 2005 and 2009 data conveys the impression that a substantial core of the 2009 results reflected natural political processes. In 2009 Ahmadinejad tended to do best in towns where his support in 2005 was highest, and he tended to do worst in towns where turnout surged the most. These natural aspects of the election results stand in contrast to the unusual pattern in which all of the notable discrepancies between the support Ahmadinejad actually received and the support the model predicts are always negative. This pattern needs to be explained before one can have confidence that natural election processes were not supplemented with artificial manipulations.

All of the analysis was done in R: the code and data and the PDF report are all available for download.
 
Stochastic Democracy: Iran Elections – FInal Update for now (via Sullivan)

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Picking the Boardwalk and Park Place DQ Projects

4 Min Read

In Defense of Consultants: A Punch-Out Based Rant

8 Min Read

Double Coverage

3 Min Read

Twitter, What We Have Done; What is Possible?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?